Semi-Supervised Few-Shot Object Detection via Adaptive Pseudo Labeling

计算机科学 帕斯卡(单位) 人工智能 目标检测 分类器(UML) 模式识别(心理学) 班级(哲学) 探测器 机器学习 电信 程序设计语言
作者
Yingbo Tang,Zhiqiang Cao,Yuequan Yang,Jierui Liu,Junzhi Yu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2151-2165 被引量:13
标识
DOI:10.1109/tcsvt.2023.3301854
摘要

Few-shot object detection (FSOD) aims to detect novel objects with limited annotated examples. Mainstream methods suffer from the data scarcity of novel classes with insufficient intra-class variations, which makes the trained model biased to base classes. Actually, there are massive unlabeled novel instances in the base dataset and their adequate utilization will enhance the discriminability of model to novel classes. This paper proposes a semi-supervised few-shot object detection method, which utilizes a teacher model and a pre-trained few-shot object detector to guide the learning of a student model through adaptive pseudo labeling. In particular, a class-adaptive threshold filtering (CATF) strategy is designed to deal with the class-imbalance problem of pseudo labels. And for each novel class, the threshold to select valuable pseudo labels is determined by quantile statistics of the confidence score distribution of pseudo labels. Furthermore, the pre-trained detector and the teacher model are associated with the preliminary CATF and in-depth CATF, respectively, and then the pseudo labels from the two-stream CATF are fused to provide supervisions. In this way, the knowledge of these two models is exploited, which improves the quality of pseudo labels. Under these supervisions, the student model is trained and the teacher model is correspondingly updated through parameters sharing, thus forming a positive feedback to improve the performance of both models. Besides, an attention module is integrated to the teacher and student models to enhance the feature representation of novel instances. The validations on PASCAL VOC and MS COCO show the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lixuegroup发布了新的文献求助10
刚刚
qinlonhl完成签到,获得积分10
刚刚
打打应助zjy采纳,获得10
1秒前
1秒前
lmx发布了新的文献求助20
4秒前
5秒前
科研喵发布了新的文献求助10
5秒前
田様应助莫西莫西采纳,获得10
6秒前
xiangsi完成签到,获得积分10
6秒前
misu完成签到,获得积分10
6秒前
脑洞疼应助liyiran采纳,获得30
7秒前
8秒前
梁子恒完成签到,获得积分20
9秒前
绝情继父完成签到,获得积分10
9秒前
追寻冰淇淋完成签到,获得积分10
9秒前
柳行天完成签到 ,获得积分10
13秒前
xrl完成签到 ,获得积分10
14秒前
Accpted河豚完成签到,获得积分10
15秒前
15秒前
15秒前
xiaxia完成签到,获得积分10
15秒前
16秒前
热心的啤酒完成签到,获得积分20
16秒前
leaolf应助吴Sehun采纳,获得10
16秒前
17秒前
6260发布了新的文献求助10
20秒前
22秒前
端庄的若剑关注了科研通微信公众号
23秒前
24秒前
24秒前
早起完成签到,获得积分10
25秒前
欢喜方盒完成签到,获得积分10
27秒前
坦率灵槐应助wx采纳,获得10
28秒前
李一一发布了新的文献求助10
29秒前
莫西莫西发布了新的文献求助10
30秒前
yang发布了新的文献求助10
31秒前
郭宇轩发布了新的文献求助10
33秒前
多多完成签到,获得积分10
33秒前
33秒前
如意冰棍完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A study of torsion fracture tests 510
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4757708
求助须知:如何正确求助?哪些是违规求助? 4100086
关于积分的说明 12686236
捐赠科研通 3814637
什么是DOI,文献DOI怎么找? 2105969
邀请新用户注册赠送积分活动 1130652
关于科研通互助平台的介绍 1008875