Deep neural network-estimated age using optical coherence tomography predicts mortality

光学相干层析成像 医学 危险系数 比例危险模型 年龄组 入射(几何) 人口学 老化 内科学 眼科 置信区间 数学 几何学 社会学
作者
Ruiye Chen,Shiran Zhang,Guankai Peng,Meng Wang,Grace Borchert,Wei Wang,Zhen Yu,Huan Liao,Zongyuan Ge,Miao He,Zhuoting Zhu
出处
期刊:GeroScience [Springer International Publishing]
被引量:1
标识
DOI:10.1007/s11357-023-00920-4
摘要

Abstract The concept of biological age has emerged as a measurement that reflects physiological and functional decline with ageing. Here we aimed to develop a deep neural network (DNN) model that predicts biological age from optical coherence tomography (OCT). A total of 84,753 high-quality OCT images from 53,159 individuals in the UK Biobank were included, among which 12,631 3D-OCT images from 8,541 participants without any reported medical conditions at baseline were used to develop an age prediction model. For the remaining 44,618 participants, OCT age gap, the difference between the OCT-predicted age and chronological age, was calculated for each participant. Cox regression models assessed the association between OCT age gap and mortality. The DNN model predicted age with a mean absolute error of 3.27 years and showed a strong correlation of 0.85 with chronological age. After a median follow-up of 11.0 years (IQR 10.9–11.1 years), 2,429 deaths (5.44%) were recorded. For each 5-year increase in OCT age gap, there was an 8% increased mortality risk (hazard ratio [HR] = 1.08, CI:1.02–1.13, P = 0.004). Compared with an OCT age gap within ± 4 years, OCT age gap less than minus 4 years was associated with a 16% decreased mortality risk (HR = 0.84, CI: 0.75–0.94, P = 0.002) and OCT age gap more than 4 years showed an 18% increased risk of death incidence (HR = 1.18, CI: 1.02–1.37, P = 0.026). OCT imaging could serve as an ageing biomarker to predict biological age with high accuracy and the OCT age gap, defined as the difference between the OCT-predicted age and chronological age, can be used as a marker of the risk of mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助dududd采纳,获得10
3秒前
酷波er应助田昀杰采纳,获得10
3秒前
5秒前
5秒前
Jasper应助fosca采纳,获得10
6秒前
7秒前
8秒前
Rong0618发布了新的文献求助20
9秒前
领导范儿应助wangjing1112采纳,获得10
10秒前
斯文可仁发布了新的文献求助10
10秒前
LHL发布了新的文献求助10
12秒前
13秒前
YHL发布了新的文献求助10
14秒前
Ryan发布了新的文献求助50
16秒前
haoyunlai发布了新的文献求助30
16秒前
jk完成签到,获得积分10
17秒前
斯文可仁完成签到,获得积分10
17秒前
找文献的天才狗完成签到,获得积分10
17秒前
李健应助王学生采纳,获得10
18秒前
ang发布了新的文献求助10
19秒前
cdercder应助青春采纳,获得10
19秒前
一样谦虚完成签到,获得积分10
20秒前
21秒前
21秒前
独特的春完成签到,获得积分10
23秒前
23秒前
张涛发布了新的文献求助10
25秒前
槿落发布了新的文献求助10
27秒前
Xiaoxiannv完成签到,获得积分10
29秒前
YHL完成签到,获得积分10
29秒前
VicTarZ发布了新的文献求助10
30秒前
doudou完成签到,获得积分10
33秒前
星辰大海应助GSQ采纳,获得30
34秒前
Foura完成签到,获得积分10
34秒前
我是老大应助yyzhou采纳,获得15
34秒前
烟花应助核桃采纳,获得10
35秒前
飘逸宛丝完成签到,获得积分10
35秒前
uniquelin完成签到,获得积分10
35秒前
故酒应助zyzy采纳,获得10
38秒前
cz完成签到 ,获得积分10
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796450
求助须知:如何正确求助?哪些是违规求助? 3341676
关于积分的说明 10307179
捐赠科研通 3058271
什么是DOI,文献DOI怎么找? 1678070
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762815