Metabolomics and machine learning approaches for diagnostic and prognostic biomarkers screening in sepsis

代谢组学 败血症 医学 苯丙氨酸 多元分析 单变量 单变量分析 氨基酸代谢 生物信息学 内科学 多元统计 新陈代谢 生物 机器学习 氨基酸 生物化学 计算机科学
作者
Han She,Yuanlin Du,Yunxia Du,Lei Tan,Yang Shunxin,Xi Luo,Qinghui Li,Xinming Xiang,Haibin Lu,Yi Hu,Liangming Liu,Tao Li
出处
期刊:BMC Anesthesiology [BioMed Central]
卷期号:23 (1) 被引量:8
标识
DOI:10.1186/s12871-023-02317-4
摘要

Abstract Background Sepsis is a life-threatening disease with a poor prognosis, and metabolic disorders play a crucial role in its development. This study aims to identify key metabolites that may be associated with the accurate diagnosis and prognosis of sepsis. Methods Septic patients and healthy individuals were enrolled to investigate metabolic changes using non-targeted liquid chromatography-high-resolution mass spectrometry metabolomics. Machine learning algorithms were subsequently employed to identify key differentially expressed metabolites (DEMs). Prognostic-related DEMs were then identified using univariate and multivariate Cox regression analyses. The septic rat model was established to verify the effect of phenylalanine metabolism-related gene MAOA on survival and mean arterial pressure after sepsis. Results A total of 532 DEMs were identified between healthy control and septic patients using metabolomics. The main pathways affected by these DEMs were amino acid biosynthesis, phenylalanine metabolism, tyrosine metabolism, glycine, serine and threonine metabolism, and arginine and proline metabolism. To identify sepsis diagnosis-related biomarkers, support vector machine (SVM) and random forest (RF) algorithms were employed, leading to the identification of four biomarkers. Additionally, analysis of transcriptome data from sepsis patients in the GEO database revealed a significant up-regulation of the phenylalanine metabolism-related gene MAOA in sepsis. Further investigation showed that inhibition of MAOA using the inhibitor RS-8359 reduced phenylalanine levels and improved mean arterial pressure and survival rate in septic rats. Finally, using univariate and multivariate cox regression analysis, six DEMs were identified as prognostic markers for sepsis. Conclusions This study employed metabolomics and machine learning algorithms to identify differential metabolites that are associated with the diagnosis and prognosis of sepsis patients. Unraveling the relationship between metabolic characteristics and sepsis provides new insights into the underlying biological mechanisms, which could potentially assist in the diagnosis and treatment of sepsis. Trial registration This human study was approved by the Ethics Committee of the Research Institute of Surgery (2021–179) and was registered by the Chinese Clinical Trial Registry (Date: 09/12/2021, ChiCTR2200055772).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lurenjia009完成签到,获得积分10
2秒前
NexusExplorer应助RPG采纳,获得10
2秒前
夜信完成签到,获得积分10
4秒前
phil完成签到,获得积分10
4秒前
微生完成签到 ,获得积分10
5秒前
滴滴滴完成签到,获得积分10
6秒前
aq22发布了新的文献求助10
7秒前
bubble完成签到 ,获得积分10
7秒前
7秒前
华仔应助Tonald Yang采纳,获得10
7秒前
allia完成签到 ,获得积分10
10秒前
诸葛烤鸭完成签到,获得积分10
11秒前
会撒娇的书白完成签到 ,获得积分10
11秒前
吴荣方发布了新的文献求助10
12秒前
加载文献别卡了完成签到,获得积分10
13秒前
科研执修完成签到,获得积分10
13秒前
14秒前
感动的老虎完成签到,获得积分10
15秒前
Echo1128完成签到 ,获得积分10
15秒前
简单的铃铛完成签到 ,获得积分10
17秒前
可靠之玉完成签到,获得积分10
18秒前
玩命的外套完成签到,获得积分10
19秒前
端庄千琴完成签到,获得积分10
19秒前
落红禹03发布了新的文献求助10
19秒前
19秒前
蓝桉完成签到 ,获得积分10
19秒前
aq22完成签到 ,获得积分10
19秒前
杨江丽完成签到 ,获得积分10
20秒前
2012csc完成签到 ,获得积分0
20秒前
个性的语山完成签到,获得积分10
20秒前
範範完成签到,获得积分10
21秒前
勤劳宛菡完成签到 ,获得积分10
21秒前
完美凝海完成签到,获得积分10
22秒前
三眼乌鸦发布了新的文献求助10
22秒前
淡然的寻冬完成签到 ,获得积分10
23秒前
十一完成签到,获得积分10
24秒前
平平平平完成签到 ,获得积分10
24秒前
24秒前
开朗的钻石完成签到,获得积分10
25秒前
夏虫完成签到,获得积分10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359417
关于积分的说明 10402560
捐赠科研通 3077261
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813693
科研通“疑难数据库(出版商)”最低求助积分说明 767743