Biomimetic Structural Optimization Method: New paradigm for shape and topology optimization

拓扑优化 数学优化 形状优化 最优化问题 矢量优化 能量最小化 启发式 拓扑(电路) 连续优化 体积热力学 计算机科学 数学 多群优化 有限元法 结构工程 工程类 化学 物理 计算化学 组合数学 量子力学
作者
Michał Nowak
标识
DOI:10.52843/cassyni.jnhk2s
摘要

The trabecular bone adapts its form to mechanical loads and is able to form lightweight but very stiff structures. In this sense, it is a problem (for the Nature) similar to the structural optimization, especially the topology optimization. The structural optimization system based on shape modification using shape derivative [1] will be presented. Structural evolution during the structural optimization procedure is based on the adaptive remodeling of the trabecular bone and is independent of domain selection. In general the problem of stiffest design (compliance minimization) has no solution. If the volume of the object is increasing, the compliance is decreasing. Thus, in the standard approach to the energy based topology optimization the additional constraint has to be added. Usually the volume of the material is limited. But with such an assumption the optimization procedure does not include any criteria for stress. In case of the biomimetic approach presented here, the role of the additional constraint plays the strain energy density on the structural surface (which is between two assumed levels forming the insensitivity zone) and the volume or structural mass results from the optimization procedure. The variational approach to shape optimization in linearized elasticity is used in order to improve convergence of a heuristic algorithm. The method is enhanced to handle the problem of structural optimization under multiple loads [2]. The new approach does not require volume constraints. Instead of imposing volume constraints, shapes are parameterized by the assumed strain energy density on the structural surface.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
YOYOYO应助科研通管家采纳,获得20
刚刚
56发布了新的文献求助10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
刚刚
Ava应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助慕白采纳,获得10
1秒前
l玖应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
fd163c应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
彳亍1117应助科研通管家采纳,获得10
1秒前
C_Li发布了新的文献求助10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
称心幼荷发布了新的文献求助10
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
舒适的晓山完成签到 ,获得积分10
3秒前
4秒前
anna1992发布了新的文献求助10
4秒前
5秒前
5秒前
勺儿发布了新的文献求助10
6秒前
hyf567完成签到,获得积分10
6秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816616
求助须知:如何正确求助?哪些是违规求助? 3359993
关于积分的说明 10406263
捐赠科研通 3078092
什么是DOI,文献DOI怎么找? 1690505
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767871