Machine Learning for Predicting Postoperative Atrial Fibrillation After Cardiac Surgery: A Scoping Review of Current Literature

心房颤动 决策树 医学 心脏外科 逻辑回归 接收机工作特性 随机森林 机器学习 人工智能 支持向量机 梯度升压 内科学 心脏病学 计算机科学
作者
Adham El Sherbini,Aryan Shah,Richard Cheng,Abdelrahman Elsebaie,Ahmed A. Harby,Damian Redfearn,Mohammad El‐Diasty
出处
期刊:American Journal of Cardiology [Elsevier BV]
卷期号:209: 66-75 被引量:3
标识
DOI:10.1016/j.amjcard.2023.09.079
摘要

Postoperative atrial fibrillation (POAF) occurs in up to 20% to 55% of patients who underwent cardiac surgery. Machine learning (ML) has been increasingly employed in monitoring, screening, and identifying different cardiovascular clinical conditions. It was proposed that ML may be a useful tool for predicting POAF after cardiac surgery. An electronic database search was conducted on Medline, EMBASE, Cochrane, Google Scholar, and ClinicalTrials.gov to identify primary studies that investigated the role of ML in predicting POAF after cardiac surgery. A total of 5,955 citations were subjected to title and abstract screening, and ultimately 5 studies were included. The reported incidence of POAF ranged from 21.5% to 37.1%. The studied ML models included: deep learning, decision trees, logistic regression, support vector machines, gradient boosting decision tree, gradient-boosted machine, K-nearest neighbors, neural network, and random forest models. The sensitivity of the reported ML models ranged from 0.22 to 0.91, the specificity from 0.64 to 0.84, and the area under the receiver operating characteristic curve from 0.67 to 0.94. Age, gender, left atrial diameter, glomerular filtration rate, and duration of mechanical ventilation were significant clinical risk factors for POAF. Limited evidence suggest that machine learning models may play a role in predicting atrial fibrillation after cardiac surgery because of their ability to detect different patterns of correlations and the incorporation of several demographic and clinical variables. However, the heterogeneity of the included studies and the lack of external validation are the most important limitations against the routine incorporation of these models in routine practice. Artificial intelligence, cardiac surgery, decision tree, deep learning, gradient-boosted machine, gradient boosting decision tree, k-nearest neighbors, logistic regression, machine learning, neural network, postoperative atrial fibrillation, postoperative complications, random forest, risk scores, scoping review, support vector machine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优雅的母鸡完成签到,获得积分10
1秒前
大方芾完成签到,获得积分10
1秒前
长街完成签到,获得积分10
1秒前
1秒前
丁俊杰发布了新的文献求助10
2秒前
fvghh发布了新的文献求助10
3秒前
李小白完成签到,获得积分10
3秒前
3秒前
iccce完成签到,获得积分10
3秒前
阔达磬完成签到,获得积分10
4秒前
5秒前
xx发布了新的文献求助10
5秒前
轻松豁发布了新的文献求助30
6秒前
6秒前
7秒前
Lin完成签到 ,获得积分10
7秒前
7秒前
刘海龙完成签到,获得积分10
7秒前
忧虑的慕山完成签到,获得积分10
7秒前
8秒前
饱满以云发布了新的文献求助10
8秒前
科研助手6应助白菜采纳,获得10
8秒前
Hhhhh完成签到,获得积分10
9秒前
Brian发布了新的文献求助100
9秒前
怕黑剑身发布了新的文献求助10
9秒前
wby0313发布了新的文献求助10
10秒前
幻月完成签到,获得积分10
10秒前
1234abcd完成签到 ,获得积分10
11秒前
阿鸿完成签到,获得积分10
11秒前
12秒前
zhoupeiyan423发布了新的文献求助10
12秒前
小半完成签到,获得积分10
12秒前
12秒前
丁俊杰完成签到,获得积分20
12秒前
fuzhy发布了新的文献求助10
13秒前
Owen应助难过的慕青采纳,获得10
13秒前
momozi完成签到,获得积分20
13秒前
xx完成签到,获得积分10
13秒前
zyshao发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
Microfluidic Cell Culture Systems 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805810
求助须知:如何正确求助?哪些是违规求助? 3350734
关于积分的说明 10350610
捐赠科研通 3066591
什么是DOI,文献DOI怎么找? 1683999
邀请新用户注册赠送积分活动 809197
科研通“疑难数据库(出版商)”最低求助积分说明 765407