A comparative study of GNN and MLP based machine learning for the diagnosis of Alzheimer’s Disease involving data synthesis

人工智能 分类器(UML) 计算机科学 正电子发射断层摄影术 模式识别(心理学) 认知障碍 多层感知器 感知器 磁共振成像 人工神经网络 机器学习 医学 疾病 病理 核医学 放射科
作者
Ke Chen,Ying Weng,Akram A. Hosseini,Tom Dening,Guokun Zuo,Yiming Zhang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:169: 442-452 被引量:15
标识
DOI:10.1016/j.neunet.2023.10.040
摘要

Alzheimer's Disease (AD) is a neurodegenerative disease that commonly occurs in older people. It is characterized by both cognitive and functional impairment. However, as AD has an unclear pathological cause, it can be hard to diagnose with confidence. This is even more so in the early stage of Mild Cognitive Impairment (MCI). This paper proposes a U-Net based Generative Adversarial Network (GAN) to synthesize fluorodeoxyglucose -positron emission tomography (FDG-PET) from magnetic resonance imaging - T1 weighted imaging (MRI-T1WI) for further usage in AD diagnosis including its early-stage MCI. The experiments have displayed promising results with Structural Similarity Index Measure (SSIM) reaching 0.9714. Furthermore, three types of classifiers are developed, i.e., one Multi-Layer Perceptron (MLP) based classifier, two Graph Neural Network (GNN) based classifiers where one is for graph classification and the other is for node classification. 10-fold cross-validation has been conducted on all trials of experiments for classifier comparison. The performance of these three types of classifiers has been compared with the different input modalities setting and data fusion strategies. The results have shown that GNN based node classifier surpasses the other two types of classifiers, and has achieved the state-of-the-art (SOTA) performance with the best accuracy at 90.18% for 3-class classification, namely AD, MCI and normal control (NC) with the synthesized fluorodeoxyglucose - positron emission tomography (FDG-PET) features fused at the input level. Moreover, involving synthesized FDG-PET as part of the input with proper data fusion strategies has also proved to enhance all three types of classifiers' performance. This work provides support for the notion that machine learning-derived image analysis may be a useful approach to improving the diagnosis of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助温柔的迎荷采纳,获得10
刚刚
外向土豆完成签到,获得积分10
1秒前
AmyDong发布了新的文献求助10
1秒前
IMxYang应助wyblobin采纳,获得10
1秒前
Rae sremer完成签到,获得积分10
1秒前
自然怀梦完成签到,获得积分10
2秒前
3秒前
刘sir发布了新的文献求助50
3秒前
田様应助陌路孤星采纳,获得10
5秒前
17完成签到,获得积分10
7秒前
阿江shk发布了新的文献求助10
7秒前
大智若愚骨头完成签到,获得积分10
7秒前
AA完成签到,获得积分10
8秒前
易哒哒完成签到,获得积分10
8秒前
8秒前
HEIKU应助AmyDong采纳,获得10
8秒前
9秒前
9秒前
9秒前
搞怪便当完成签到,获得积分10
9秒前
非而者厚应助jinyu采纳,获得10
9秒前
科研人员发布了新的文献求助50
10秒前
Jasper应助神外之城采纳,获得20
11秒前
乐正乘风应助lango采纳,获得10
11秒前
香蕉觅云应助猪猪hero采纳,获得10
11秒前
11秒前
BowenShi发布了新的文献求助10
12秒前
黄大仙完成签到,获得积分10
12秒前
dd完成签到,获得积分10
13秒前
吴辰阳发布了新的文献求助10
14秒前
zho发布了新的文献求助10
15秒前
凌兰发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
哈哈哈发布了新的文献求助10
16秒前
ff发布了新的文献求助10
16秒前
FashionBoy应助陌路孤星采纳,获得10
17秒前
汉堡包应助五五我采纳,获得10
17秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353550
关于积分的说明 10365988
捐赠科研通 3069804
什么是DOI,文献DOI怎么找? 1685786
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304