Deep graph convolutional network for small-molecule retention time prediction

残余物 卷积神经网络 图形 试验装置 均方预测误差 平均绝对百分比误差 人工智能 模式识别(心理学) 化学 计算机科学 人工神经网络 算法 理论计算机科学
作者
Qiyue Kang,Pengfei Fang,Shuai Zhang,Huachuan Qiu,Zhenzhong Lan
出处
期刊:Journal of Chromatography A [Elsevier BV]
卷期号:1711: 464439-464439 被引量:8
标识
DOI:10.1016/j.chroma.2023.464439
摘要

The retention time (RT) is a crucial source of data for liquid chromatography-mass spectrometry (LCMS). A model that can accurately predict the RT for each molecule would empower filtering candidates with similar spectra but differing RT in LCMS-based molecule identification. Recent research shows that graph neural networks (GNNs) outperform traditional machine learning algorithms in RT prediction. However, all of these models use relatively shallow GNNs. This study for the first time investigates how depth affects GNNs' performance on RT prediction. The results demonstrate that a notable improvement can be achieved by pushing the depth of GNNs to 16 layers by the adoption of residual connection. Additionally, we also find that graph convolutional network (GCN) model benefits from the edge information. The developed deep graph convolutional network, DeepGCN-RT, significantly outperforms the previous state-of-the-art method and achieves the lowest mean absolute percentage error (MAPE) of 3.3% and the lowest mean absolute error (MAE) of 26.55 s on the SMRT test set. We also finetune DeepGCN-RT on seven datasets with various chromatographic conditions. The mean MAE of the seven datasets largely decreases 30% compared to previous state-of-the-art method. On the RIKEN-PlaSMA dataset, we also test the effectiveness of DeepGCN-RT in assisting molecular structure identification. By 30% lessening the number of potential structures, DeepGCN-RT is able to improve top-1 accuracy by about 11%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助是阿龙呀采纳,获得30
刚刚
1秒前
烟花应助DQ采纳,获得10
1秒前
hrpppp关注了科研通微信公众号
1秒前
Shannon应助哦啦啦采纳,获得10
2秒前
共享精神应助哦啦啦采纳,获得10
2秒前
vlovy发布了新的文献求助10
2秒前
罗皮特完成签到,获得积分10
2秒前
文赟慧发布了新的文献求助10
3秒前
crazyrock完成签到,获得积分10
3秒前
4秒前
Akim应助tuzhihong采纳,获得10
4秒前
4秒前
4秒前
彭于晏应助jingzhe采纳,获得10
5秒前
xixi完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
深情安青应助origin采纳,获得10
9秒前
浮游应助赤潮采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
xixi发布了新的文献求助10
11秒前
11秒前
三三得星完成签到 ,获得积分10
11秒前
雪山飞龙发布了新的文献求助10
12秒前
13秒前
安静的雅香完成签到,获得积分10
14秒前
小航2025发布了新的文献求助10
14秒前
善学以致用应助雾昂采纳,获得10
14秒前
木子木公完成签到,获得积分10
15秒前
zxp发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
nbnmbm发布了新的文献求助10
19秒前
QOP应助小曹努力采纳,获得10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4848620
求助须知:如何正确求助?哪些是违规求助? 4148371
关于积分的说明 12849751
捐赠科研通 3895661
什么是DOI,文献DOI怎么找? 2141136
邀请新用户注册赠送积分活动 1160848
关于科研通互助平台的介绍 1060883