Application of artificial intelligence techniques for non-alcoholic fatty liver disease diagnosis: A systematic review (2005–2023)

脂肪性肝炎 脂肪肝 医学 脂肪变性 弹性成像 瞬态弹性成像 疾病 生物标志物 放射科 肝活检 病理 内科学 活检 超声波 生物化学 化学
作者
Hamed Zamanian,Ahmad Shalbaf,Mohammad Reza Zali,Ali Khalaj,Pooneh Dehghan,Mastaneh Rajabian Tabesh,Behzad Hatami,Roohallah Alizadehsani,Ru San Tan,U. Rajendra Acharya
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:244: 107932-107932 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107932
摘要

Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly growing incidence worldwide. For prognostication and therapeutic decisions, it is important to distinguish the pathological stages of NAFLD: steatosis, steatohepatitis, and liver fibrosis, which are definitively diagnosed on invasive biopsy. Non-invasive ultrasound (US) imaging, including US elastography technique, and clinical parameters can be used to diagnose and grade NAFLD and its complications. Artificial intelligence (AI) is increasingly being harnessed for developing NAFLD diagnostic models based on clinical, biomarker, or imaging data. In this work, we systemically reviewed the literature for AI-enabled NAFLD diagnostic models based on US (including elastography) and clinical (including serological) data. We performed a comprehensive search on Google Scholar, Scopus, and PubMed search engines for articles published between January 2005 and June 2023 related to AI models for NAFLD diagnosis based on US and/or clinical parameters using the following search terms: "non-alcoholic fatty liver disease", "non-alcoholic steatohepatitis", "deep learning", "machine learning", "artificial intelligence", "ultrasound imaging", "sonography", "clinical information". We reviewed 64 published models that used either US (including elastography) or clinical data input to detect the presence of NAFLD, non-alcoholic steatohepatitis, and/or fibrosis, and in some cases, the severity of steatosis, inflammation, and/or fibrosis as well. The performances of the published models were summarized, and stratified by data input and algorithms used, which could be broadly divided into machine and deep learning approaches. AI models based on US imaging and clinical data can reliably detect NAFLD and its complications, thereby reducing diagnostic costs and the need for invasive liver biopsy. The models offer advantages of efficiency, accuracy, and accessibility, and serve as virtual assistants for specialists to accelerate disease diagnosis and reduce treatment costs for patients and healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的冷梅完成签到,获得积分10
刚刚
叁删发布了新的文献求助10
刚刚
Yuna完成签到,获得积分10
刚刚
1秒前
2秒前
czj完成签到,获得积分0
2秒前
3秒前
Pluminata应助同学好采纳,获得10
4秒前
黄郑翔发布了新的文献求助10
6秒前
6秒前
lei发布了新的文献求助10
6秒前
大方万仇发布了新的文献求助10
7秒前
uone完成签到,获得积分10
8秒前
wqq完成签到,获得积分20
8秒前
小Q啊啾发布了新的文献求助10
9秒前
慈祥的鸣凤完成签到 ,获得积分10
10秒前
hanshishengye完成签到 ,获得积分10
11秒前
12秒前
shiqiang mu应助王鑫采纳,获得10
12秒前
煜琪发布了新的文献求助10
12秒前
向往完成签到 ,获得积分10
13秒前
昏睡的白桃完成签到,获得积分10
13秒前
感动的世平完成签到,获得积分10
14秒前
15秒前
英姑应助alexysw采纳,获得10
16秒前
李健的小迷弟应助XXF采纳,获得10
16秒前
qing完成签到,获得积分10
17秒前
爱听歌的糖豆完成签到,获得积分10
17秒前
20秒前
超级手套完成签到,获得积分10
21秒前
21秒前
xiaoxiao完成签到 ,获得积分10
22秒前
还行吧完成签到 ,获得积分10
22秒前
22秒前
研友_nqv5WZ完成签到 ,获得积分10
23秒前
李白完成签到,获得积分10
23秒前
23秒前
殊荣完成签到,获得积分10
23秒前
南极的企鹅365完成签到 ,获得积分10
24秒前
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4081482
求助须知:如何正确求助?哪些是违规求助? 3620898
关于积分的说明 11487524
捐赠科研通 3336285
什么是DOI,文献DOI怎么找? 1834076
邀请新用户注册赠送积分活动 902879
科研通“疑难数据库(出版商)”最低求助积分说明 821351