A Novel Fake News Detection Model for Context of Mixed Languages Through Multiscale Transformer

计算机科学 变压器 人工智能 人工神经网络 卷积神经网络 语言模型 语义学(计算机科学) 自然语言处理 语义鸿沟 特征(语言学) 机器学习 程序设计语言 工程类 语言学 哲学 电压 电气工程 图像(数学) 图像检索
作者
Zhiwei Guo,Qin Zhang,Feng Ding,Zhu Xiao-gang,Keping Yu
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5079-5089 被引量:35
标识
DOI:10.1109/tcss.2023.3298480
摘要

Fake news detection has been a more urgent technical demand for operators of online social platforms, and the prevalence of deep learning well boosts its development. From the model structure, existing research works can be categorized into three types: convolution filtering-based neural network approaches, sequential analysis-based neural network approaches, and attention mechanism-based neural network approaches. However, almost all of them were developed oriented to scenes of a single language, without considering the context of mixed languages. To bridge such gap, this article extends to the basic pretraining language processing model transformer into the multiscale format and proposes a novel fake news detection model for the context of mixed languages through a multiscale transformer to fully capture the semantic information of the text. By extracting more fruitful feature levels of initial textual contents, it is expected to obtain more resilient feature spaces for the semantics characteristics of mixed languages. Finally, experiments are conducted on a postprocessed real-world dataset to illustrate the efficiency of the proposal by comparing performance with four baseline methods. The results obtained show that the proposed method has an accuracy of about 2%–10% higher than commonly used baseline models, indicating that the scheme has appropriate detection efficiency in mixed language scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MMMMM发布了新的文献求助10
刚刚
我嘞个豆应助wish采纳,获得10
刚刚
李爱国应助wanert采纳,获得10
3秒前
久9发布了新的文献求助10
3秒前
田様应助小鲸鱼采纳,获得10
3秒前
3秒前
3秒前
5秒前
帆帆发布了新的文献求助10
5秒前
5秒前
科研怪人发布了新的文献求助10
5秒前
houcheng发布了新的文献求助10
6秒前
7秒前
zhang应助聪慧的微笑采纳,获得10
7秒前
Ryan发布了新的文献求助10
9秒前
9秒前
所所应助linyican采纳,获得10
10秒前
木木完成签到,获得积分10
10秒前
田格本发布了新的文献求助10
10秒前
feng完成签到,获得积分10
13秒前
木木发布了新的文献求助10
13秒前
wish发布了新的文献求助10
13秒前
起风了完成签到,获得积分10
13秒前
酷波er应助Umar采纳,获得10
14秒前
阳光涫发布了新的文献求助10
14秒前
15秒前
15秒前
张思梦完成签到,获得积分10
16秒前
赵赵完成签到,获得积分20
17秒前
18秒前
19秒前
村上春树的摩的完成签到 ,获得积分10
21秒前
乐乐应助田格本采纳,获得10
21秒前
李爱国应助美好焦采纳,获得10
21秒前
赵赵发布了新的文献求助10
21秒前
22秒前
研友_VZG7GZ应助阳光涫采纳,获得10
24秒前
无花果应助Jiancui采纳,获得30
24秒前
wish完成签到,获得积分10
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949156
求助须知:如何正确求助?哪些是违规求助? 3494560
关于积分的说明 11072889
捐赠科研通 3225241
什么是DOI,文献DOI怎么找? 1782895
邀请新用户注册赠送积分活动 867218
科研通“疑难数据库(出版商)”最低求助积分说明 800687