亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantitative and Qualitative Analysis of PCC-based Change detection methods over Agricultural land using Sentinel-2 Dataset

分类器(UML) 计算机科学 人工神经网络 农用地 人工智能 农业 模式识别(心理学) 机器学习 数据挖掘 地理 考古
作者
Gurwinder Singh,Ganesh Kumar Sethi,Sartajvir Singh
标识
DOI:10.1109/ican56228.2022.10007391
摘要

To plan production, the sowing, and harvesting of a particular crop, and the performance of marketing activities information about yields is important for both the traders and producers. In this study, various efforts have been made to extract critical information for agriculture land use classification areas using Sentinel-2 datasets, which was not possible with the help of multi-spectral datasets. As part of the current work, the artificial neural networks (ANN) classifier is combined with the post-classification comparison (PCC), thereby predicting seasonal variability from satellite imagery. The ANN classifier is incorporated into the post-classification comparison procedure, called ANN-based change detection. As part of the demonstration, the datasets were acquired using Sentinel-2 datasets during the period 2017 – 2018 over the agricultural land in Block Khamanon, District Fatehgarh Sahib, Punjab State, India. This process cross-validated the performance of ANN with a conventional maximum likelihood classifier (MLC) for confirmation. In comparison with the conventional PCC-MLC model (classified maps have an average of 86 – 88.8%, and change maps have an average of 83.6 – 84.2%), the PCC-ANN model achieved accuracy (classified maps have an average of 90.4 – 93.4%, and change maps have an average of 87.4 – 90%). In addition to identifying water surfaces, crop types, and man-made features, this study can also help in performing a wide range of land-use patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
8秒前
13秒前
16秒前
CherylZhao完成签到,获得积分10
20秒前
25秒前
岁和景明完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
45秒前
52秒前
1分钟前
1分钟前
poki完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Mei应助冷静大米采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
FashionBoy应助oleskarabach采纳,获得10
3分钟前
3分钟前
3分钟前
某某某完成签到,获得积分10
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Mei完成签到,获得积分10
4分钟前
4分钟前
香蕉觅云应助哈哈哈采纳,获得10
4分钟前
4分钟前
冷静大米完成签到,获得积分10
4分钟前
5分钟前
冷静大米发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
顺心蜜粉应助紧张的书本采纳,获得10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520770
关于积分的说明 11204801
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629