Overall mortality risk analysis for rectal cancer using deep learning-based fuzzy systems

结直肠癌 模糊逻辑 直肠 比例危险模型 计算机科学 肿瘤科 医学 人工智能 机器学习 数据挖掘 癌症 内科学
作者
Cheng‐Hong Yang,Wen‐Ching Chen,Jin-Bor Chen,Han-Pang Huang,Li‐Yeh Chuang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:157: 106706-106706 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.106706
摘要

Colorectal cancer is a leading cause of cancer mortality worldwide, with an increasing incidence rate in developing countries. Integration of genetic information with cancer therapy guidance has shown promise in cancer treatment, indicating its potential as an essential tool in translation oncology. However, the high-throughput analysis and variability of genomic data poses a major challenge to conventional analytic approaches. In this study, we propose an advanced analytic approach, named "Fuzzy-based RNNCoxPH," incorporated fuzzy logic, recurrent neural networks (RNNs), and Cox proportional hazards regression (CoxPH) for detecting missense variants associated with high-risk of all-cause mortality in rectum adenocarcinoma. The test data set was downloaded from "Rectum adenocarcinoma, TCGA-READ" the Genomic Data Commons (GDC) portal. In this study, four model-based risk score models were derived using RNN, CoxPH, RNNCoxPHAddition, and RNNCoxPHMultiplication. The RNNCoxPHAddition and RNNCoxPHMultiplication models were obtained as the sum and product of the RNN risk degree matrix and the CoxPH risk degree matrix, respectively. Moreover, the fuzzy logic system was used to calculate the survival risk values of missense variants and classified their membership grade to improve the identification of high-risk gene variation locations associated with cancer mortality. The four models were integrated to develop an advanced risk estimation model. There were 20 028 variants associated with survival status, amongst 17 638 variants were associated with survival and 2390 variants associated with mortality. The proposed Fuzzy-based RNNCoxPH model obtained a balanced accuracy of 93.7%, which was significantly higher than that of the other four test methods. In particular, the CoxPH model is commonly used in medical researches and the XGBoost model is famous for its high accuracy in machine learning. The results suggest that the Fuzzy-based RNNCoxPH model exhibits a higher efficacy in identifying and classifying the missense variants related to mortality risk in rectum adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
4秒前
xiaoshu发布了新的文献求助10
4秒前
livr发布了新的文献求助10
4秒前
喜悦的威完成签到,获得积分10
5秒前
七七丫完成签到,获得积分10
5秒前
6秒前
6秒前
autobot1完成签到,获得积分10
6秒前
7秒前
Owen应助DoctorDiDi采纳,获得10
7秒前
汤唯发布了新的文献求助10
7秒前
欢喜的天空完成签到,获得积分20
7秒前
7秒前
烂漫的沛菡完成签到 ,获得积分10
7秒前
悲凉的康乃馨完成签到,获得积分10
8秒前
科研通AI5应助健忘的访琴采纳,获得10
8秒前
大个应助dududuudu采纳,获得10
8秒前
9秒前
10秒前
10秒前
几酝完成签到 ,获得积分10
12秒前
12秒前
神经元发布了新的文献求助10
13秒前
13秒前
13秒前
昏睡的蟠桃应助珞槿采纳,获得50
13秒前
13秒前
打打应助lyk2815采纳,获得10
14秒前
14秒前
Amy完成签到,获得积分10
14秒前
上官若男应助平常雨泽采纳,获得10
15秒前
yuhanz发布了新的文献求助10
16秒前
17秒前
17秒前
DoctorDiDi发布了新的文献求助10
18秒前
18秒前
Eden发布了新的文献求助30
18秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814803
求助须知:如何正确求助?哪些是违规求助? 3358942
关于积分的说明 10398561
捐赠科研通 3076361
什么是DOI,文献DOI怎么找? 1689802
邀请新用户注册赠送积分活动 813273
科研通“疑难数据库(出版商)”最低求助积分说明 767599