亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fetal health classification using LightGBM with Grid search based hyper parameter tuning

随机森林 Boosting(机器学习) 决策树 人工智能 计算机科学 超参数优化 逻辑回归 机器学习 心电图 梯度升压 统计分类 胎儿 胎心率 集成学习 医学 怀孕 支持向量机 生物 遗传学
作者
Vimala Nagabotu,Anupama Namburu
出处
期刊:Recent Patents on Engineering [Bentham Science]
卷期号:19 (1) 被引量:1
标识
DOI:10.2174/1872212118666230703155834
摘要

Background: Fetal health monitoring throughout pregnancy is challenging and complex. Complications in the fetal health not identified at the right time lead to mortality of the fetus as well the pregnant women. Hence, obstetricians check the fetal health state by monitoring the fetal heart rate (FHR). Cardiotocography (CTG) is a technique used by obstetricians to access the physical well-being of fetal during pregnancy. It provides information on the fetal heart rate and uterine respiration, which can assist in determining whether the fetus is normal or suspect or pathology. CTG data has typically been evaluated using machine learning (ML) algorithms in predicting the wellness of the fetal and speeding up the detection process. Methods: In this work, we developed LightGBM with a Grid search-based hyperparameter tuning model to predict fetal health classification. The classification results are analysed quantitatively using the performance measures, namely, precision, Recall, F1-Score, and Accuracy Comparisons were made between different classification models like Logistic Regression, Decision Tree, Random Forest, k-nearest neighbors, Bagging, ADA boosting, XG boosting, and LightGBM, which were trained with the CTG Dataset obtained by the patented fetal monitoring system of 2,216 data points from pregnant women in their third trimester available in the Kaggle dataset. The dataset contains three classes: normal, suspect, and pathology. Our proposed model will give better results in predicting fetal health classification. Results: In this paper, the performance of the proposed algorithm LightGBM is compared and experimented with various Machine learning Techniques namely LR, DT, RF, KNN, Boosting, Ada boosting, and XG Boost and the classification accuracy of the respective algorithms are 84%, 94%, 93%, 88%, 94%, 89%, 96%.The LightGBM achieved a performance of 97% and outperforms the former models. Conclusion: The LightGBM-based fetal health classification has been presented. Ensemble models were applied to the FHR dataset and presented the hybrid algorithm, namely Light GBM, and its application to fetal health classification. LightGBM has advantages that include fast training, improved performance, scale-up capabilities, and lesser memory usage than other ensemble models. The proposed model is more consistent and superior to other considered machine learning models and is suitable for the classification of fetal health based on FHR data. Finally, the outcomes of the multiple methods are compared using the same training and test data in order to verify the efficiency of LightGBM. The model can be further enhanced by making it hybrid by combining the advantages of different models and optimization techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
sllytn完成签到,获得积分10
11秒前
Chloe发布了新的文献求助10
12秒前
华仔应助poolgreen采纳,获得10
36秒前
37秒前
poolgreen完成签到,获得积分10
46秒前
柴子完成签到 ,获得积分10
57秒前
orixero应助Chloe采纳,获得10
1分钟前
Panther完成签到,获得积分10
1分钟前
NS发布了新的文献求助10
1分钟前
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
2分钟前
Chloe发布了新的文献求助10
2分钟前
2分钟前
Chloe完成签到,获得积分10
2分钟前
2分钟前
2分钟前
孤独君浩发布了新的文献求助10
3分钟前
CipherSage应助孤独君浩采纳,获得10
3分钟前
3分钟前
胡杉完成签到,获得积分10
3分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
4分钟前
scm应助科研通管家采纳,获得30
4分钟前
天天快乐应助胡杉采纳,获得10
4分钟前
ldjldj_2004完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Nan发布了新的文献求助10
4分钟前
科目三应助Dr_an采纳,获得20
4分钟前
4分钟前
poolgreen发布了新的文献求助10
4分钟前
躺赢完成签到 ,获得积分10
4分钟前
4分钟前
Dr_an发布了新的文献求助20
4分钟前
宅宅完成签到 ,获得积分10
4分钟前
大宝发布了新的文献求助10
4分钟前
5分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827283
求助须知:如何正确求助?哪些是违规求助? 3369624
关于积分的说明 10456586
捐赠科研通 3089268
什么是DOI,文献DOI怎么找? 1699822
邀请新用户注册赠送积分活动 817501
科研通“疑难数据库(出版商)”最低求助积分说明 770251