Adversarial Transformer for Repairing Human Airway Segmentation

分割 计算机科学 人工智能 概化理论 气道 图像分割 模式识别(心理学) 计算机视觉 医学 数学 外科 统计
作者
Zeyu Tang,Yang Nan,Simon Walsh,Guang Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 5015-5022 被引量:1
标识
DOI:10.1109/jbhi.2023.3290136
摘要

Automated airway segmentation models often suffer from discontinuities in peripheral bronchioles, which limits their clinical applicability. Furthermore, data heterogeneity across different centres and pathological abnormalities pose significant challenges to achieving accurate and robust segmentation in distal small airways. Accurate segmentation of airway structures is essential for the diagnosis and prognosis of lung diseases. To address these issues, we propose a patch-scale adversarial-based refinement network that takes in preliminary segmentation and original CT images and outputs a refined mask of the airway structure. Our method is validated on three datasets, including healthy cases, pulmonary fibrosis, and COVID-19 cases, and quantitatively evaluated using seven metrics. Our method achieves more than a 15% increase in the detected length ratio and detected branch ratio compared to previously proposed models, demonstrating its promising performance. The visual results show that our refinement approach, guided by a patch-scale discriminator and centreline objective functions, effectively detects discontinuities and missing bronchioles. We also demonstrate the generalizability of our refinement pipeline on three previous models, significantly improving their segmentation completeness. Our method provides a robust and accurate airway segmentation tool that can help improve diagnosis and treatment planning for lung diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木火灰完成签到,获得积分10
刚刚
小可完成签到,获得积分20
1秒前
源老头完成签到,获得积分10
2秒前
姚姚发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
打打应助隐形初雪采纳,获得10
6秒前
可爱的函函应助大力蚂蚁采纳,获得10
6秒前
清秀豪英发布了新的文献求助10
6秒前
CodeCraft应助沉静高山采纳,获得10
7秒前
kana发布了新的文献求助10
7秒前
7秒前
老实芯完成签到,获得积分10
7秒前
Lee完成签到,获得积分10
7秒前
7秒前
8秒前
麻辣烫小姐完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
852应助饱满秋采纳,获得10
9秒前
9秒前
9秒前
10秒前
维护完成签到,获得积分20
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
英吉利25发布了新的文献求助10
11秒前
11秒前
共享精神应助HJJHJH采纳,获得10
12秒前
今后应助nEGpw8采纳,获得10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 5000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4309652
求助须知:如何正确求助?哪些是违规求助? 3831434
关于积分的说明 11988053
捐赠科研通 3471412
什么是DOI,文献DOI怎么找? 1903397
邀请新用户注册赠送积分活动 950664
科研通“疑难数据库(出版商)”最低求助积分说明 852530