Heat and park attendance: Evidence from “small data” and “big data” in Hong Kong

出勤 大数据 样品(材料) 全球定位系统 气候变化 气象学 地理 环境科学 计算机科学 政治学 生态学 电信 数据挖掘 化学 生物 法学 色谱法
作者
Tongping Hao,Haoliang Chang,Sisi Liang,P. D. Jones,Pak Wai Chan,Lishuai Li,Jianxiang Huang
出处
期刊:Building and Environment [Elsevier BV]
卷期号:234: 110123-110123 被引量:13
标识
DOI:10.1016/j.buildenv.2023.110123
摘要

Urban heat disrupts the use of parks, although the extent of such disruptions remains disputed. Literature relies on “small data” methods, such as questionnaires, field studies, or human-subject experiments, to capture the behavioural response to heat. Their findings are often in contradiction with each other, possibly due to the small sample sizes, the short study period, or the few sites available in a single study. The rise of “big data” such as social media offers new opportunities, yet its reliability and usefulness remain unknown. This paper describes a study using Twitter data (tweets) to study park attendance under the influence of hot weather. Some 20,000 tweets geo-coded within major parks were obtained in Hong Kong over a period of three years. Field studies have been conducted in parallel in a large park covering the hot and cool seasons and some 40,000 attendance were recorded over three months. Both the “small” and “big data” were analyzed and compared to each other. Findings suggest that a 1 °C increase in temperature was associated with some 4% drop in park attendance and some 1% drop in park tweets. The differences between the two data sources be explained by the ‘leakage’ of indoor tweets to parks caused by GPS drift near buildings. The Universal Thermal Climate Index can better predict self-reported thermal sensations, compared with other biometeorological indicators. This study has contributed to methodologies and new evidence to the study of behaviors and thermal adaptations in an outdoor space, and geo-coded tweets can serve as a powerful data source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
nenoaowu发布了新的文献求助10
1秒前
xiaisxi发布了新的文献求助10
5秒前
7秒前
SXM发布了新的文献求助10
7秒前
英俊的铭应助MeSs采纳,获得10
7秒前
乐观的觅松完成签到,获得积分10
8秒前
8秒前
迷路冰露完成签到,获得积分10
9秒前
研友_VZG7GZ应助123采纳,获得10
9秒前
zzcherished完成签到,获得积分10
9秒前
11秒前
香蕉觅云应助淡然安雁采纳,获得10
12秒前
斐_完成签到,获得积分10
12秒前
壮歌发布了新的文献求助10
13秒前
15秒前
Lilllllly完成签到,获得积分10
15秒前
15秒前
迷路冰露发布了新的文献求助10
15秒前
16秒前
16秒前
科研通AI5应助尊敬的惠采纳,获得10
17秒前
19秒前
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
桐桐应助科研通管家采纳,获得10
20秒前
20秒前
OnionJJ应助科研通管家采纳,获得10
20秒前
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818655
求助须知:如何正确求助?哪些是违规求助? 3361728
关于积分的说明 10413958
捐赠科研通 3079935
什么是DOI,文献DOI怎么找? 1693704
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248