已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Analytics Capability, Supply Chain Capabilities, and Operational Performance: A Meta‐Analytic Investigation

供应链 分析 计算机科学 供应链管理 过程管理 运营管理 业务 数据科学 营销 经济
作者
Alok Raj,Rajeev Ranjan Kumar,Sriram Narayanan,Ahmet H. Kirca,Anand Jeyaraj
出处
期刊:Journal of Operations Management [Wiley]
卷期号:71 (6): 786-805 被引量:2
标识
DOI:10.1002/joom.1376
摘要

ABSTRACT How does the development of Analytics Capability (AC) of a firm influence its supply chain performance? With increasing numbers of firms adopting data analytics to enhance their supply chains and overall performance, this question has become particularly important. To answer the question, this study proposes and tests three dominant supply chain capabilities (integration, flexibility, and resilience) as key mechanisms through which AC is linked with operational performance. We use 405 effect sizes reported in 174 prior empirical studies based on data gathered from 104,296 informants to draw insights using a meta‐analytic structural equation modeling approach. The theory developed herein contributes to the literature by demonstrating that integration, flexibility, and resilience mediate the association between AC and operational performance, which in turn affects customer service performance. Specifically, a substantial degree of variance in the effects of AC on operational performance is mediated by integration, flexibility, and resilience, respectively. We also find that the effect size for the association between AC and operational performance is higher in developing economies, while the link between operational performance and customer service performance is higher in developed economies. Our analyses are robust to several empirical challenges, including (a) common method bias, (b) outliers, (c) endogeneity, and (d) journal quality, attesting to the stability of the findings. Overall, our results suggest that supply chain integration, flexibility, and resilience are key domains of managerial and theoretical focus for implementing firms' data analytics initiatives, reinforcing the role of the supply chain in leveraging data analytics capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lars完成签到,获得积分10
1秒前
古渡应助张逍遥采纳,获得10
1秒前
cfffff发布了新的文献求助10
2秒前
7秒前
陨落星辰完成签到 ,获得积分10
11秒前
科研小菜狗完成签到 ,获得积分10
11秒前
accepted完成签到 ,获得积分10
13秒前
自信书文完成签到 ,获得积分10
15秒前
李爱国应助dst采纳,获得10
16秒前
16秒前
人美心善大野驴完成签到 ,获得积分10
16秒前
zsj完成签到 ,获得积分10
18秒前
卧镁铀钳完成签到 ,获得积分10
20秒前
faquir发布了新的文献求助10
22秒前
25秒前
26秒前
11发布了新的文献求助10
28秒前
Jasper应助还单身的惜文采纳,获得10
30秒前
31秒前
简单山水完成签到,获得积分10
31秒前
充电宝应助TingtingGZ采纳,获得10
31秒前
31秒前
浮浮世世发布了新的文献求助10
32秒前
32秒前
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
Akim应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
34秒前
NexusExplorer应助科研通管家采纳,获得10
34秒前
浮游应助科研通管家采纳,获得10
34秒前
Chris完成签到 ,获得积分0
35秒前
科研蓝月发布了新的文献求助10
35秒前
简单山水发布了新的文献求助10
35秒前
旺仔同学完成签到,获得积分10
35秒前
笨笨完成签到,获得积分10
38秒前
38秒前
酷波er应助11采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458782
求助须知:如何正确求助?哪些是违规求助? 4564757
关于积分的说明 14296896
捐赠科研通 4489835
什么是DOI,文献DOI怎么找? 2459317
邀请新用户注册赠送积分活动 1449038
关于科研通互助平台的介绍 1424524