Machine Learning-Assisted Multicolor Fluorescence Assay for Visual Data Acquisition and Intelligent Inspection of Multiple Food Hazards Regardless of Matrix Interference

干扰(通信) 计算机科学 基质(化学分析) 荧光 人工智能 计算机视觉 数据采集 机器学习 模式识别(心理学) 化学 光学 色谱法 电信 物理 频道(广播) 操作系统
作者
Tong Zhai,Wentao Gu,Miao Yu,Yi Shen,Jing‐Min Liu,Shuo Wang
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.5c01325
摘要

Regarding the significant health risks of pesticide residue in foods, while current sensors still suffer from limited efficiency and stability, as well as difficulties in qualitative identification and quantitative detection of mixtures, development of innovative detection techniques combined with advanced methodology holds great research value. Herein, a highly efficient intelligent food risk evaluation system was proposed by integrating a multicolor fluorescent responsive assay with machine learning (ML) algorithms for the identification and quantification of multiple pesticides, carbendazim (CBZ), heptachlor (HEP), chlordimeform (CDF), and their mixtures. This method leveraged the color changes generated from the interaction between multicolor carbon dots (CDs) and target pesticide molecules. By extracting color signal feature values from these reactions and integrating the visual data acquisition with ML models, this method enables efficient qualitative identification and quantitative detection of multiple pesticides, regardless of matrix interference through a dual-source data acquisition strategy without large instruments. The developed evaluation system via a ″stepwise prediction″ strategy automatically demonstrated robust qualitative identification capability with a discrimination accuracy of 99.3% for pesticide categorization while achieving robust quantitative prediction accuracy (R2 ≥ 0.8946) for pesticide concentration detection, verified in six kinds of food matrix. This method significantly improves the detection stability and efficiency, providing a promising tool for food safety monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆小果发布了新的文献求助10
1秒前
王金娥完成签到,获得积分10
1秒前
huanir99完成签到,获得积分10
3秒前
4秒前
lll完成签到,获得积分10
4秒前
4秒前
梁琳琳琳关注了科研通微信公众号
4秒前
6秒前
八段锦完成签到 ,获得积分10
6秒前
6秒前
可耐的嫣娆完成签到 ,获得积分10
8秒前
小太阳发布了新的文献求助10
9秒前
lll发布了新的文献求助10
11秒前
Jingshuiliushen完成签到,获得积分10
11秒前
竹筏过海应助香蕉君达采纳,获得30
12秒前
12秒前
14秒前
18秒前
幽默衬衫发布了新的文献求助10
20秒前
20秒前
mashibeo完成签到,获得积分10
22秒前
甄幻梦发布了新的文献求助10
22秒前
23秒前
浮游应助xinL采纳,获得10
23秒前
CodeCraft应助娃哈哈采纳,获得10
24秒前
24秒前
小兰发布了新的文献求助10
27秒前
29秒前
29秒前
思源应助文静若血采纳,获得10
31秒前
研友_VZG7GZ应助许安采纳,获得10
31秒前
KinoFreeze完成签到 ,获得积分10
31秒前
32秒前
yaswer发布了新的文献求助10
33秒前
33秒前
沉默的可乐完成签到 ,获得积分10
33秒前
34秒前
香蕉觅云应助幽默衬衫采纳,获得10
35秒前
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962