无定形固体
各向异性
材料科学
催化作用
纳米技术
结晶学
化学
物理
光学
有机化学
作者
Till Schertenleib,Mehrdad Asgari,Beatriz Mouriño,Vikram V. Karve,Thorsten Felder,Dragos Stoian,Volodymyr Bon,Jian Hao,Andres Ortega‐Guerrero,Emad Oveisi,Kumar Varoon Agrawal,Berend Smit,Stefan Kaskel,Simon J. L. Billinge,Wendy L. Queen
出处
期刊:Chem
[Elsevier]
日期:2025-06-12
卷期号:11 (11): 102619-102619
被引量:2
标识
DOI:10.1016/j.chempr.2025.102619
摘要
We introduce a new approach to defect engineering in Zr-based metal-organic frameworks (Zr-MOFs), aiming to reduce Zr site valency while preserving high node connectivity. Using a rapid heat treatment (RHT) in humid air, oxygen vacancies (O-vacancies) were created in Dresden University of Technology (DUT)-67 through cluster dehydration. Unlike conventional defect engineering, aimed at creating missing-linker defects, this method breaks intra-cluster Zr-μ3O–Zr bonds, generating coordinatively unsaturated Zr (Zrcus) sites. Pair distribution function (PDF) analysis, X-ray absorption spectroscopy (XAS), and density functional theory (DFT) calculations reveal that the O-vacancies lead to symmetry breaking, irreversible node distortions, and framework amorphization. This treatment converts 50% of metal sites to Zrcus sites, nearly doubling the catalytic activity of DUT-67 in glyoxal conversion to glycolic acid. DFT modeling and in situ PDF analysis highlight the dynamic behavior of Zr clusters under reaction conditions, suggesting a new avenue for defect engineering in Zr-MOFs to enhance catalytic performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI