Targeted Interventions Lead to Quality Improvement in Year 2 of an Artificial Intelligence-Based Diabetic Retinopathy Detection Program in Northern California

医学 糖尿病性视网膜病变 心理干预 干预(咨询) 人工智能 医学物理学 家庭医学 糖尿病 护理部 计算机科学 内分泌学
作者
Karen Chen,Cindy S. Zhao,Austen Knapp,Eliot R. Dow,Anuradha C. Phadke,Marilyn Tan,Kaniksha Desai,Christopher Or,Vinit B. Mahajan,V. Diana,Prithvi Mruthyunjaya,Theodore Leng,David Myung
出处
期刊:Retina-the Journal of Retinal and Vitreous Diseases [Lippincott Williams & Wilkins]
标识
DOI:10.1097/iae.0000000000004499
摘要

Purpose: This study evaluates the second-year outcomes of an AI-based diabetic retinopathy (DR) detection program (Stanford Teleophthalmology Autonomous Testing and Universal Screening (STATUS)) implemented in primary care and endocrinology clinics in Northern California. We focused on assessing improvements following implementation of an intervention-based framework to increase AI system gradability and patient encounters. Methods: A retrospective analysis was conducted involving diabetic patients aged 18 years and older with no prior DR diagnosis or examination in the past year. These patients presented for routine DR screening in primary care or endocrinology clinics. In its second year, the STATUS program expanded to additional sites and introduced an intervention-based framework, including targeted training protocols, to enhance screening accuracy and efficiency. Our study measured AI system gradability and tracked patient encounters over Year 2. Results: The AI system's gradability increased from 62.3% in Year 1 to 71.2% in Year 2, comparable to non-mydriatic gradability rates observed in clinical trials. Patient encounters increased by 21.9%, indicating expanded reach and improved accessibility. Interventions, including enhanced training protocols and camera utilization reports, effectively improved screening efficiency. Conclusion: The second-year outcomes of the STATUS AI-based DR screening program demonstrate significant improvements in image gradability by the AI system as well as in patient encounter numbers. These findings highlight the potential of interventional methods to continually improve the outcomes of AI-based screening programs and offer a scalable solution to the growing burden of diabetic retinopathy. The success of STATUS supports further integration and expansion of AI-based screening in clinical practice for early detection and management of DR, improving patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助苹果山芙采纳,获得10
刚刚
刚刚
goinggo发布了新的文献求助10
刚刚
不想干活应助烂漫的水彤采纳,获得20
1秒前
yiyi发布了新的文献求助30
1秒前
Pamburger完成签到,获得积分10
2秒前
小蘑菇应助悦耳的井采纳,获得30
3秒前
YaboHu发布了新的文献求助10
3秒前
搜集达人应助百草采纳,获得10
3秒前
5秒前
5秒前
5秒前
诚心的水杯完成签到,获得积分10
6秒前
Shirely完成签到,获得积分10
8秒前
Allen完成签到,获得积分10
8秒前
113Y应助贪学傲菡采纳,获得10
9秒前
9秒前
9秒前
LLP关注了科研通微信公众号
10秒前
Zoo应助方黎昕采纳,获得40
11秒前
CodeCraft应助CICI采纳,获得10
11秒前
慕青应助莫非采纳,获得10
12秒前
非常完成签到,获得积分10
12秒前
蚌埠发布了新的文献求助10
12秒前
啦啦啦完成签到,获得积分10
12秒前
司宁完成签到,获得积分10
13秒前
bxb发布了新的文献求助10
14秒前
小n发布了新的文献求助10
15秒前
16秒前
太阳是希望应助cowboy007采纳,获得10
16秒前
17秒前
ww完成签到,获得积分10
17秒前
113Y应助hyy采纳,获得30
17秒前
小蘑菇应助ww采纳,获得10
17秒前
Annlucy完成签到 ,获得积分10
17秒前
ding应助Jane采纳,获得10
18秒前
完美无声完成签到,获得积分10
19秒前
善学以致用应助echo采纳,获得10
19秒前
bxb完成签到,获得积分10
19秒前
笨小孩完成签到,获得积分10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4151798
求助须知:如何正确求助?哪些是违规求助? 3688017
关于积分的说明 11650787
捐赠科研通 3380729
什么是DOI,文献DOI怎么找? 1855229
邀请新用户注册赠送积分活动 917158
科研通“疑难数据库(出版商)”最低求助积分说明 830840