Machine Learning and Big Data Mining Reveal Earth's Deep Time Crustal Thickness and Tectonic Evolution: A New Chemical Mohometry Approach

土(古典元素) 构造学 地质学 大数据 很深的时间 深度学习 地球科学 天体生物学 地震学 人工智能 计算机科学 古生物学 数据挖掘 数学物理 物理
作者
Jianping Zhou,Ehsan Farahbakhsh,Simon Williams,Xiaohui Li,Yongjiang Liu,Sanzhong Li,R. Dietmar Müller
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:130 (5)
标识
DOI:10.1029/2024jb030404
摘要

Abstract Quantitative analysis of crustal thickness evolution across deep time poses critical insights into the planet's geological history. It may help uncover new areas with potential critical mineral deposits and reveal the impacts of crustal thickness and elevation changes on the development of the atmosphere, hydrosphere, and biosphere. However, most existing estimation methods are restricted to arc‐related magmas, limiting their broader application. By mining extensive geochemical data from present‐day subduction zones, collision orogenic belts, and non‐subduction‐related intraplate igneous rock samples worldwide, along with their corresponding Moho depths during magmatism, we have developed a machine learning‐based mohometry linking geochemical data to Moho depth, which is universally applicable in reconstructing ancient orogenic systems' paleo‐crustal evolution and tracking complex tectonic histories in both spatial and temporal dimensions. Our novel mohometry model demonstrates robust performance, achieving an R 2 of 0.937 and an Root Mean Squared Error of 4.3 km. Feature importance filtering highlights key geochemical proxies, allowing for accurate paleo‐crustal thickness estimation even when many elements are missing. Model validation in southern Tibet and the South China Block, regions characterized by well‐constrained crustal histories and complex tectonic processes, demonstrates its broad applicability. Reconstructed paleo‐crustal thickness records reveal a strong correlation between crustal thickening events and the formation of porphyry ore deposits, offering new insights for mineral exploration in ancient orogens subjected to significant surface erosion. By enabling the reconstruction of crustal thickness across geological timescales, this model enhances our understanding of Earth's internal dynamics and their interactions with surface processes, thereby advancing our comprehension of Earth's geological history.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
许甜甜鸭应助偏翩采纳,获得10
3秒前
niuade发布了新的文献求助10
3秒前
d00007发布了新的文献求助10
3秒前
宋哲哲发布了新的文献求助30
3秒前
溜溜心儿发布了新的文献求助10
4秒前
5秒前
zyw发布了新的文献求助10
7秒前
小二郎应助CTX采纳,获得10
7秒前
猕猴桃猴发布了新的文献求助10
9秒前
江峰发布了新的文献求助10
9秒前
高兴微笑完成签到,获得积分10
10秒前
川农辅导员完成签到,获得积分10
10秒前
David完成签到,获得积分10
10秒前
溜溜心儿完成签到,获得积分10
11秒前
d00007完成签到,获得积分10
11秒前
无尘泪完成签到,获得积分10
12秒前
summeryouyou完成签到,获得积分10
13秒前
科研通AI5应助想要毕业采纳,获得10
13秒前
Lucas应助梅子酒采纳,获得10
14秒前
15秒前
艺涵完成签到,获得积分10
16秒前
猕猴桃猴完成签到,获得积分10
20秒前
顺其自然完成签到 ,获得积分10
20秒前
皛宁发布了新的文献求助10
20秒前
22秒前
ding应助江峰采纳,获得10
23秒前
今后应助lxlcx采纳,获得10
24秒前
28秒前
28秒前
鲜蘑完成签到,获得积分10
29秒前
31秒前
32秒前
feng1235完成签到,获得积分10
33秒前
张流筝完成签到 ,获得积分10
33秒前
33秒前
荀煜祺发布了新的文献求助10
33秒前
34秒前
江峰发布了新的文献求助10
35秒前
Conan_CD发布了新的文献求助20
37秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370356
关于积分的说明 10463000
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700346
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770472