Malicious Traffic Detection Method for Power Monitoring Systems Based on Multi-Model Fusion Stacking Ensemble Learning

计算机科学 一般化 入侵检测系统 理论(学习稳定性) 人工智能 机器学习 堆积 数据挖掘 物理 数学分析 数学 核磁共振
作者
Hao Zhang,Ye Liang,Yuanzhuo Li,Sihan Wang,Huimin Gong,Jianping Zhai,Hua Zhang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (8): 2614-2614
标识
DOI:10.3390/s25082614
摘要

With the rapid development of the internet, the increasing amount of malicious traffic poses a significant challenge to the network security of critical infrastructures, including power monitoring systems. As the core part of the power grid operation, the network security of power monitoring systems directly affects the stability of the power system and the safety of electricity supply. Nowadays, network attacks are complex and diverse, and traditional rule-based detection methods are no longer adequate. With the advancement of machine learning technologies, researchers have introduced them into the field of traffic detection to address this issue. Current malicious traffic detection methods mostly rely on single machine learning models, which face problems such as poor generalization, low detection accuracy, and instability. To solve these issues, this paper proposes a malicious traffic detection method based on multi-model fusion, using the stacking strategy to integrate models. Compared to single models, stacking enhances the model’s generalization and stability, improving detection accuracy. Experimental results show that the accuracy of the stacking model on the NSL-KDD test set is 96.5%, with an F1 score of 96.6% and a false-positive rate of 1.8%, demonstrating a significant improvement over single models and validating the advantages of multi-model fusion in malicious traffic detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
W,xiaolei完成签到,获得积分10
2秒前
细腻涵菱完成签到,获得积分10
4秒前
4秒前
W,xiaolei发布了新的文献求助10
7秒前
7秒前
呓语发布了新的文献求助10
9秒前
9秒前
星辰大海应助几号大家好采纳,获得10
10秒前
蓝风铃完成签到 ,获得积分10
10秒前
11秒前
log_10x完成签到 ,获得积分10
14秒前
14秒前
Jasper应助小门采纳,获得10
16秒前
Cheung2121发布了新的文献求助10
16秒前
18秒前
shiqi完成签到,获得积分10
21秒前
21秒前
22秒前
Alice发布了新的文献求助10
23秒前
24秒前
26秒前
27秒前
iioii发布了新的文献求助10
27秒前
27秒前
威武初瑶发布了新的文献求助10
27秒前
hihj完成签到,获得积分10
28秒前
richestchen完成签到,获得积分10
29秒前
可爱的函函应助Hany采纳,获得10
30秒前
hoira发布了新的文献求助10
30秒前
30秒前
kkk完成签到 ,获得积分10
31秒前
老迟到的威完成签到,获得积分10
31秒前
小刘一定能读C9博完成签到 ,获得积分10
31秒前
谭宝发布了新的文献求助10
31秒前
1Yer6完成签到 ,获得积分10
31秒前
怦然完成签到,获得积分20
32秒前
aptamer44发布了新的文献求助10
32秒前
hihj发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063151
求助须知:如何正确求助?哪些是违规求助? 3601588
关于积分的说明 11438417
捐赠科研通 3324851
什么是DOI,文献DOI怎么找? 1827822
邀请新用户注册赠送积分活动 898376
科研通“疑难数据库(出版商)”最低求助积分说明 818997