Diboron-Doped Perylene-Based Polycyclic Aromatic Hydrocarbons for Enhancing Charge Transport: A Theoretical Perspective

透视图(图形) 兴奋剂 电荷(物理) 多环芳烃 化学 计算化学 化学物理 光化学 有机化学 材料科学 物理 计算机科学 分子 光电子学 量子力学 人工智能
作者
Rui Wang,Gui-Ya Qin,Xiao-Qi Sun,Huiyuan Li,Jing‐Fu Guo,Tengfei He,Ai‐Min Ren
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
标识
DOI:10.1021/acs.jpca.5c00547
摘要

The enhancement of the optoelectronic properties of organic conjugation materials through boron doping may reshape current understanding, with boron-doped polycyclic aromatic hydrocarbons (PAHs) poised to be high-performance organic optoelectronic materials. However, the impact of boron doping on charge transport remains underexplored. In this study, the effects of diboron doping, including both dense and dispersed doping, along with further π-extension on the electronic structure, stacking pattern, and charge transport of perylene-based PAHs were systematically investigated using density-functional theory. The results indicate that diboron doping can switch the molecular packing from herringbone to π-stacking, which increases the transfer integrals and significantly improves the mobility. Furthermore, it is revealed that intermolecular B···B and B···C interactions promote the formation of π-π stacking by symmetry-adapted perturbation theory and Hirshfeld surface analysis. In addition, densely doped B2-TBPA exhibits a one-dimensional intrinsic hole mobility of up to 40.86 cm2 V-1 s-1, while B2-HBP with π-extension and dispersed diboron doping exhibits pitched-π stacking, allowing it to display potential for bipolar transport. Monte Carlo and molecular dynamics simulations further demonstrate that diboron-doped PAHs offer more stable charge transport with reduced thermal disorder. This research provides new insights for the experimental design and synthesis of high-performance organic semiconductor devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助NINI采纳,获得10
刚刚
1秒前
liulk完成签到,获得积分10
2秒前
baixue发布了新的文献求助10
2秒前
敖恶完成签到,获得积分10
3秒前
无限尔云完成签到,获得积分10
3秒前
情怀应助李秋秋采纳,获得10
4秒前
4秒前
bkagyin应助执着谷兰采纳,获得10
4秒前
iNk应助gao采纳,获得20
5秒前
南辰辰发布了新的文献求助30
5秒前
gao完成签到,获得积分10
5秒前
illusion2019应助泥嚎采纳,获得20
6秒前
lan完成签到,获得积分10
6秒前
7秒前
7秒前
优美若雁完成签到,获得积分10
7秒前
替我活着发布了新的文献求助10
8秒前
8秒前
搜集达人应助双双采纳,获得10
8秒前
9秒前
敖恶发布了新的文献求助10
9秒前
Ava应助乔乔兔采纳,获得10
9秒前
星辰大海应助乔乔兔采纳,获得10
9秒前
工诩发布了新的文献求助10
10秒前
Vivian Chen发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
那种完成签到,获得积分10
13秒前
柴柴发布了新的文献求助10
13秒前
13秒前
半凡完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
替我活着完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4746915
求助须知:如何正确求助?哪些是违规求助? 4094306
关于积分的说明 12666942
捐赠科研通 3806283
什么是DOI,文献DOI怎么找? 2101350
邀请新用户注册赠送积分活动 1126663
关于科研通互助平台的介绍 1003266