The Improved Informed‐RRT* Algorithm, Which Optimizes the Sampling Strategy and Integrates an Artificial Potential Field

领域(数学) 采样(信号处理) 计算机科学 势场 算法 人工智能 数学优化 数学 计算机视觉 物理 滤波器(信号处理) 地球物理学 纯数学
作者
Kang Kai‐shen,Hailong Huang,Ziqi Song,Wang Hai‐ze
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.70000
摘要

ABSTRACT This article presents an algorithm for mobile robots that enables autonomous navigation in complex environments. Currently, achieving autonomous navigation for ground mobile robots in intricate and unstructured settings continues to pose significant challenges. To address issues such as dispersed sampling points, low sampling efficiency, and excessive path waypoints encountered in traditional Rapidly‐Exploring Random Trees (RRT) algorithms, this paper proposes an Optimized Sampling Strategy and Artificial Potential Fields Fusion‐based Informed‐RRT* global path planning algorithm. Initially, sampling angles are determined based on the position of the target point, and the workspace is partitioned into regions with varying levels of importance. Subsequently, an improved artificial potential fields algorithm is integrated to further refine the resultant forces acting on the nodes. Finally, cubic spline interpolation is utilized to smooth the generated path. The proposed algorithm was validated through simulation and experimental studies conducted on simple, narrow, and complex maps. The results demonstrated significant reductions in search time, path length, and the number of path waypoints compared to conventional A*, Dijkstra, RRT, RRT*, and Informed‐RRT algorithms. Additionally, the smoothness of the generated paths was notably improved. In the virtual maze experiments and real‐world environment tests, the improved algorithm presented in this paper demonstrates significant advantages over five other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
彭于晏应助FOOL采纳,获得30
2秒前
温柔的盼雁完成签到,获得积分10
2秒前
发文章发布了新的文献求助10
2秒前
文艺的凡梦完成签到,获得积分20
4秒前
踏实采波完成签到,获得积分10
6秒前
太叔夜南发布了新的文献求助10
7秒前
8秒前
酷波er应助yiyo采纳,获得10
11秒前
隐形曼青应助呵呵采纳,获得30
12秒前
14秒前
守望阳光1完成签到,获得积分10
15秒前
15秒前
16秒前
伍六七完成签到,获得积分10
16秒前
青山发布了新的文献求助10
17秒前
木木三发布了新的文献求助10
19秒前
19秒前
20秒前
伍六七发布了新的文献求助10
20秒前
xxw完成签到,获得积分10
21秒前
FOOL发布了新的文献求助30
21秒前
22秒前
轻松元柏完成签到,获得积分10
22秒前
lalala发布了新的文献求助10
23秒前
Lenora发布了新的文献求助10
24秒前
24秒前
25秒前
FANGQUAN发布了新的文献求助10
25秒前
微笑牛排完成签到,获得积分20
26秒前
小蘑菇应助害羞的傲霜采纳,获得10
27秒前
28秒前
29秒前
nana完成签到 ,获得积分10
29秒前
29秒前
脑斧儿完成签到,获得积分10
30秒前
小小米发布了新的文献求助10
30秒前
Lenora完成签到,获得积分20
33秒前
cxyyy完成签到,获得积分10
33秒前
8R60d8应助我没昵称采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3945653
求助须知:如何正确求助?哪些是违规求助? 3490425
关于积分的说明 11056602
捐赠科研通 3221334
什么是DOI,文献DOI怎么找? 1780567
邀请新用户注册赠送积分活动 865588
科研通“疑难数据库(出版商)”最低求助积分说明 799958