Federated transfer learning for remaining useful life prediction in prognostics with data privacy

预言 计算机科学 学习迁移 人工智能 机器学习 数据挖掘
作者
Wei Zhang,Nan Jiang,Shi-ming Yang,Xiang Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ade552
摘要

Abstract Collaborative model training with multiple clients is becoming an effective solution for prognostic problems, due to the scarcity of the machine run-to-failure data in the real industries. However, direct data sharing and centralized learning are usually not feasible in practice, since the private local data basically cannot be exposed to the other commercial clients. Furthermore, the machines at different clients mostly have different degradation patterns and failure modes, resulting in different data distributions. That poses great challenges for data-driven knowledge transfer across clients with data privacy. To address these issues, this paper proposes a federated transfer learning method for remaining useful life predictions. The proposed prior alignment and feature adaptation schemes can achieve extraction of shared features across domains without simultaneous processing of the source and target data. The availability of the target-domain data in the whole life cycle is not required by the proposed method, which enhances the model applicability. Experiments on prognostic datasets are carried out for validations, and the results suggest the proposed method is promising for the federated transfer learning problems in the real industries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
刚刚
yanlibiu完成签到,获得积分10
刚刚
刚刚
卡皮巴拉yuan完成签到,获得积分10
刚刚
dou发布了新的文献求助10
1秒前
调皮的胜发布了新的文献求助10
1秒前
YZYJLS完成签到,获得积分10
2秒前
陈江河发布了新的文献求助10
2秒前
3秒前
3秒前
科研通AI2S应助飞跃采纳,获得10
3秒前
守培完成签到,获得积分10
3秒前
3秒前
3秒前
Ava应助旋覆花哎呦喂采纳,获得10
3秒前
Mina完成签到,获得积分10
4秒前
Zoe发布了新的文献求助30
4秒前
4秒前
七龙珠完成签到,获得积分10
4秒前
Zhy完成签到,获得积分10
4秒前
4秒前
买了束花完成签到,获得积分10
5秒前
星你完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
CY发布了新的文献求助10
7秒前
7秒前
jiangzhong发布了新的文献求助10
8秒前
昵称发布了新的文献求助10
8秒前
Godspeed发布了新的文献求助10
8秒前
搜集达人应助逗小妹采纳,获得10
8秒前
9秒前
9秒前
无花果应助火星上黎云采纳,获得10
9秒前
9秒前
翎尧完成签到,获得积分10
9秒前
9秒前
9秒前
深情安青应助知123采纳,获得10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977279
求助须知:如何正确求助?哪些是违规求助? 3521546
关于积分的说明 11208673
捐赠科研通 3258557
什么是DOI,文献DOI怎么找? 1799294
邀请新用户注册赠送积分活动 878161
科研通“疑难数据库(出版商)”最低求助积分说明 806810