Integrating a host transcriptomic biomarker with a large language model for diagnosis of lower respiratory tract infection

接收机工作特性 医学 生物标志物 呼吸道感染 尤登J统计 内科学 降钙素原 人工智能 呼吸系统 败血症 计算机科学 生物 生物化学
作者
Hoang Van Phan,Natasha Spottiswoode,Emily Lydon,Victoria Chu,Adolfo Cuesta,Alexander D. Kazberouk,Natalie Richmond,Carolyn S. Calfee,Charles Langelier
标识
DOI:10.1101/2024.08.28.24312732
摘要

Abstract BACKGROUND Lower respiratory tract infections (LRTIs) are a leading cause of mortality worldwide and can be difficult to diagnose in critically ill patients, as non-infectious causes of respiratory failure can present with similar clinical features. METHODS We developed a LRTI diagnostic method combining the pulmonary transcriptomic biomarker FABP4 with electronic medical record (EMR) text assessment using the large language model Generative Pre-trained Transformer 4 (GPT-4). We evaluated this approach in a prospective cohort of critically ill adults with acute respiratory failure from whom tracheal aspirate FABP4 expression was measured by RNA sequencing. Patients with LRTI or non-infectious conditions were identified using retrospective, multi-physician clinical adjudication. We then confirmed our findings by applying this method to an independent validation cohort of 115 adults with acute respiratory failure. RESULTS In the derivation cohort, a combined classifier incorporating FABP4 expression and GPT-4– assisted EMR analysis achieved an AUC of 0.93 (±0.08) and an accuracy of 84%, outperforming FABP4 expression alone (AUC 0.84 ± 0.11) and GPT-4–based analysis alone (AUC 0.83 ± 0.07). By comparison, the primary medical team’s admission diagnosis had an accuracy of 72%. In the validation cohort, the combined classifier yielded an AUC of 0.98 (±0.04) and an accuracy of 96%. CONCLUSIONS Integrating a host transcriptional biomarker with EMR text analysis using a large language model may offer a promising new approach to improving the diagnosis of LRTIs in critically ill adults. Description We present the novel use of a host transcriptional biomarker combined with artificial intelligence analysis of electronic medical record data to diagnose lower respiratory tract infections in a derivation cohort of critically ill adults, then the validation of this approach in a second, fully independent, cohort. This approach demonstrated high diagnostic accuracy compared to a gold standard of post-hoc multi-physician adjudication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬月完成签到,获得积分10
刚刚
weiye1992完成签到,获得积分10
刚刚
111完成签到,获得积分20
1秒前
dakjdia发布了新的文献求助10
1秒前
辰辰完成签到 ,获得积分10
1秒前
慕洋发布了新的文献求助10
1秒前
何处1惹尘埃完成签到,获得积分10
3秒前
神勇千万完成签到,获得积分10
3秒前
3秒前
张正完成签到,获得积分10
4秒前
5秒前
秋风完成签到,获得积分10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
田李君完成签到,获得积分10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
minus完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5756327
求助须知:如何正确求助?哪些是违规求助? 5503733
关于积分的说明 15382650
捐赠科研通 4894027
什么是DOI,文献DOI怎么找? 2632508
邀请新用户注册赠送积分活动 1580385
关于科研通互助平台的介绍 1536298