功能性反应
捕食
数学
应用数学
分叉
理论(学习稳定性)
捕食者
霍普夫分叉
数理经济学
控制理论(社会学)
生态学
生物
非线性系统
人工智能
控制(管理)
计算机科学
物理
量子力学
机器学习
作者
Xiaozhou Feng,Kunyu Li,Haixia Li
摘要
In this paper, we consider the spatiotemporal dynamics behaviors of a Leslie–Gower diffusion predator–prey system with prey refuge and Beddington–DeAnglis (B‐D) functional response. By using the Poincaré inequality and topological degree theory, we first investigate the Turing instability of the reaction–diffusion system and prove the existence of nonconstant positive steady‐state solutions. Then we discuss the steady‐state bifurcation and the direction to Hopf bifurcation of the PDE model by the local bifurcation theorem and center manifold theory. Finally, some numerical simulations are presented to supplement the analytic results in one dimension which indicates that changes in prey refuge and diffusion coefficient can increase the complexity of the system.
科研通智能强力驱动
Strongly Powered by AbleSci AI