Integrative Graph-Based Framework for Predicting circRNA Drug Resistance Using Disease Contextualization and Deep Learning

计算机科学 人工智能 图形 语境化 机器学习 理论计算机科学 程序设计语言 口译(哲学)
作者
Yongtian Wang,W. H. Shen,Yewei Shen,Feng Shang,Tao Wang,Xuequn Shang,Jiajie Peng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/jbhi.2024.3457271
摘要

Circular RNAs (circRNAs) play a crucial role in gene regulation and have been implicated in the development of drug resistance in cancer, representing a significant challenge in oncological therapeutics. Despite advancements in computational models predicting RNA-drug interactions, existing frameworks often overlook the complex interplay between circRNAs, drug mechanisms, and disease contexts. This study aims to bridge this gap by introducing a novel computational model, circRDRP, that enhances prediction accuracy by integrating disease-specific contexts into the analysis of circRNA-drug interactions. It employs a hybrid graph neural network that combines features from Graph Attention Networks (GAT) and Graph Convolutional Networks (GCN) in a two-layer structure, with further enhancement through convolutional neural networks. This approach allows for sophisticated feature extraction from integrated networks of circRNAs, drugs, and diseases. Our results demonstrate that the circRDRP model outperforms existing models in predicting drug resistance, showing significant improvements in accuracy, precision, and recall. Specifically, the model shows robust predictive capability in case studies involving major anticancer drugs such as Cisplatin and Methotrexate, indicating its potential utility in precision medicine. In conclusion, circRDRP offers a powerful tool for understanding and predicting drug resistance mediated by circRNAs, with implications for designing more effective cancer therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dado完成签到,获得积分10
1秒前
流水完成签到 ,获得积分10
1秒前
徐逊发布了新的文献求助10
4秒前
Raymond发布了新的文献求助10
5秒前
7秒前
科研通AI5应助冷静新烟采纳,获得10
7秒前
淡淡咖啡豆完成签到 ,获得积分10
7秒前
ksxx发布了新的文献求助10
10秒前
善学以致用应助ghifi37采纳,获得10
10秒前
ss应助阳光的紫丝采纳,获得20
11秒前
星魂残月夜完成签到 ,获得积分10
11秒前
11秒前
Steven发布了新的文献求助10
12秒前
充电宝应助lzl17o8采纳,获得10
13秒前
2Cd完成签到,获得积分10
13秒前
九天完成签到 ,获得积分10
14秒前
15秒前
老温完成签到,获得积分10
16秒前
复成完成签到 ,获得积分10
18秒前
20秒前
20秒前
naruy发布了新的文献求助10
22秒前
lzl17o8完成签到,获得积分10
22秒前
LV完成签到 ,获得积分10
24秒前
lzl17o8发布了新的文献求助10
26秒前
dadad发布了新的文献求助10
28秒前
28秒前
29秒前
30秒前
gmchen完成签到,获得积分10
33秒前
英姑应助科研通管家采纳,获得10
34秒前
科研通AI5应助爱听歌笑寒采纳,获得10
34秒前
wonder123应助科研通管家采纳,获得10
34秒前
wuhzh发布了新的文献求助10
34秒前
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
34秒前
完美世界应助科研通管家采纳,获得10
34秒前
kai发布了新的文献求助10
34秒前
Zx完成签到 ,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401