超参数
卷积神经网络
实验数据
计算机科学
人工神经网络
人工智能
机器学习
变形(气象学)
鉴定(生物学)
生物系统
材料科学
算法
复合材料
数学
生物
统计
植物
作者
Johannes Gerritzen,Andreas Hornig,Peter Winkler,Μaik Gude
标识
DOI:10.1016/j.commatsci.2024.113274
摘要
In this work, we demonstrate how Machine learning (ML) techniques can be employed to externalize the knowledge and time intensive process of material parameter identification. This is done on the example of a recent data driven material model for the non-linear shear behavior of glass fiber reinforced polypropylene (GF/PP) (Gerritzen, 2022). A convolutional neural network (CNN) based model architecture is trained to predict material modeling parameters based on the input of stress–strain-curves. The optimal model architecture and training setup are determined by hyperparameter optimization (HPO). Solely virtual data, generated using the target material model, is used throughout the training and HPO. The final CNN is capable of calculating model parameter combinations from experimental stress–strain-curves which lead to excellent agreement between experimental and associated model curve.
科研通智能强力驱动
Strongly Powered by AbleSci AI