Performance‐Oriented Understanding and Design of a Robotic Tadpole: Lower Energy Cost, Higher Speed

蝌蚪(物理学) 计算机科学 能源成本 能量(信号处理) 控制工程 工程类 物理 建筑工程 粒子物理学 量子力学
作者
Xu Chao,Imran Hameed,David Navarro‐Alarcon,Xingjian Jing
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22452
摘要

ABSTRACT A compliant plate driven by an active joint is frequently employed as a fin to improve swimming efficiency due to its continuous and compliant kinematics. However, very few studies have focused on the performance‐oriented design of multijoint mechanisms enhanced with flexible fins, particularly regarding critical design factors such as the active‐joint ratio and dimension‐related stiffness distribution of the fin. To this aim, we developed a robotic tadpole by integrating a multijoint mechanism with a flexible fin and conduct a comprehensive investigation of its swimming performance with different tail configurations. A dynamic model with identified hydrodynamic parameters was established to predict propulsive performance. Numerous simulations and experiments were conducted to explore the impact of the active‐joint ratio and the dimension‐related stiffness distribution of the fin. The results reveal that (a) tails with different active‐joint ratios achieve their best performance at a small phase difference, while tails with a larger active‐joint ratio tend to perform worse than those with a smaller active‐joint ratio when a larger phase difference is used; (b) the optimal active‐joint ratio enables the robot to achieve superior performance in terms of swimming velocity and energy efficiency; and (c) with the same surface area, a longer fin with a wide leading edge and a narrow trailing edge can achieve higher swimming speeds with lower energy consumption. This work presents novel and in‐depth insights into the design of bio‐inspired underwater robots with compliant propulsion mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LH完成签到,获得积分10
刚刚
guorui发布了新的文献求助10
2秒前
DJH完成签到,获得积分10
2秒前
2秒前
3秒前
阿欣完成签到,获得积分10
3秒前
不安忆寒发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
科研通AI6应助周一采纳,获得10
7秒前
Proudmoore完成签到,获得积分10
8秒前
木马发布了新的文献求助10
8秒前
情怀应助树杪采纳,获得10
8秒前
9秒前
ping发布了新的文献求助10
9秒前
N1koooooo发布了新的文献求助10
10秒前
李琳发布了新的文献求助10
10秒前
情怀应助青丝挽情丝采纳,获得10
10秒前
11秒前
11秒前
11秒前
科研通AI6应助小胖采纳,获得10
11秒前
完美的从菡完成签到,获得积分10
11秒前
12秒前
轩丫丫完成签到,获得积分10
12秒前
12秒前
beckham发布了新的文献求助10
12秒前
欣喜忻完成签到,获得积分10
12秒前
爆米花应助是希希啊a采纳,获得10
12秒前
SciGPT应助kuichen采纳,获得30
14秒前
acadedog发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
富贵完成签到,获得积分10
14秒前
等待geduo完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610659
求助须知:如何正确求助?哪些是违规求助? 4695146
关于积分的说明 14885752
捐赠科研通 4722969
什么是DOI,文献DOI怎么找? 2545215
邀请新用户注册赠送积分活动 1509959
关于科研通互助平台的介绍 1473103