Unsupervised and Self-supervised Learning in Low-Dose Computed Tomography Denoising: Insights from Training Strategies

计算机断层摄影术 人工智能 降噪 无监督学习 计算机科学 机器学习 模式识别(心理学) 医学物理学 医学 放射科
作者
Feixiang Zhao,Mingzhe Liu,Mingrong Xiang,Dongfen Li,Xin Jiang,Xiance Jin,Lin Cai,Ruili Wang
标识
DOI:10.1007/s10278-024-01213-8
摘要

In recent years, X-ray low-dose computed tomography (LDCT) has garnered widespread attention due to its significant reduction in the risk of patient radiation exposure. However, LDCT images often contain a substantial amount of noises, adversely affecting diagnostic quality. To mitigate this, a plethora of LDCT denoising methods have been proposed. Among them, deep learning (DL) approaches have emerged as the most effective, due to their robust feature extraction capabilities. Yet, the prevalent use of supervised training paradigms is often impractical due to the challenges in acquiring low-dose and normal-dose CT pairs in clinical settings. Consequently, unsupervised and self-supervised deep learning methods have been introduced for LDCT denoising, showing considerable potential for clinical applications. These methods' efficacy hinges on training strategies. Notably, there appears to be no comprehensive reviews of these strategies. Our review aims to address this gap, offering insights and guidance for researchers and practitioners. Based on training strategies, we categorize the LDCT methods into six groups: (i) cycle consistency-based, (ii) score matching-based, (iii) statistical characteristics of noise-based, (iv) similarity-based, (v) LDCT synthesis model-based, and (vi) hybrid methods. For each category, we delve into the theoretical underpinnings, training strategies, strengths, and limitations. In addition, we also summarize the open source codes of the reviewed methods. Finally, the review concludes with a discussion on open issues and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孙兆杰发布了新的文献求助10
1秒前
皮听南发布了新的文献求助10
1秒前
123完成签到 ,获得积分10
1秒前
柔弱水蓉完成签到,获得积分10
3秒前
CodeCraft应助nzxnzx采纳,获得10
3秒前
景略1234发布了新的文献求助10
3秒前
子啼当归发布了新的文献求助10
4秒前
牛难摧完成签到,获得积分10
4秒前
XING发布了新的文献求助10
4秒前
6秒前
小徐完成签到 ,获得积分10
6秒前
芒果味完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
JamesPei应助猫仔采纳,获得10
6秒前
8秒前
慕青应助MR_Z采纳,获得10
8秒前
lin完成签到,获得积分10
8秒前
MOJITO完成签到,获得积分10
8秒前
11秒前
12秒前
华仔应助beituo采纳,获得10
12秒前
小二郎应助能干戎采纳,获得10
12秒前
斯李iko完成签到,获得积分10
13秒前
脑洞疼应助Dracule采纳,获得30
14秒前
科研通AI5应助man采纳,获得10
15秒前
16秒前
大果粒发布了新的文献求助10
18秒前
18秒前
19秒前
Carsen完成签到,获得积分10
21秒前
子暮发布了新的文献求助10
21秒前
听风发布了新的文献求助10
22秒前
情怀应助待放光的吖啶酯采纳,获得10
22秒前
22秒前
向日葵完成签到,获得积分10
22秒前
22秒前
李健的小迷弟应助明帅采纳,获得10
23秒前
芒果味发布了新的文献求助10
25秒前
柚子完成签到,获得积分20
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4253326
求助须知:如何正确求助?哪些是违规求助? 3786455
关于积分的说明 11884236
捐赠科研通 3437048
什么是DOI,文献DOI怎么找? 1886314
邀请新用户注册赠送积分活动 937594
科研通“疑难数据库(出版商)”最低求助积分说明 843249