Robot milling tool wear monitoring based on variational autoencoder with multidomain depth features

自编码 机器人 人工智能 计算机科学 计算机视觉 材料科学 地质学 深度学习
作者
Jiawei Xu,Jianguo Chen,Lei Yang,Wenjuan Jiang,Chang’an Zhou,Gang Wang,Kaixing Zhang
标识
DOI:10.1177/09544089251318116
摘要

Due to the open-chain, multilink structure and weak rigidity characteristics of the industrial robots, the stability of their milling process is poor, significantly exacerbating tool wear and breakage. Therefore, this article proposes a tool wear condition monitoring method based on variational autoencoders (VAE) and deep learning neural networks. This method combines unsupervised and supervised learning to analyze the mapping relationship between multidomain features of monitoring signals and tool wear, achieving the monitoring and identification of tool wear conditions. Firstly, a multidomain feature extraction method is proposed to obtain wear characteristics from milling signals. Then, based on the proposed method, VAE is combined with long short-term memory neural networks (LSTM), Transformer encoders integrated with LSTM layers, and bidirectional LSTM neural networks (BiLSTM) to construct three tool wear prediction models: VAE-LSTM, VAE-LSTM-Transformer, and VAE-BiLSTM. These models achieve deep integration of multidomain features and map them to tool wear values. Finally, experiments were conducted to validate the tool wear conditions for both robot milling and traditional machine tool milling. The results show that this method has high prediction accuracy, strong adaptability to changes in milling parameters, and strong compatibility with different milling equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文听寒发布了新的文献求助10
1秒前
传奇3应助mimimi采纳,获得10
2秒前
Jeanie完成签到,获得积分10
3秒前
3秒前
Canma完成签到 ,获得积分10
3秒前
科研通AI6应助huanir99采纳,获得10
5秒前
hahaya发布了新的文献求助20
6秒前
Lucas应助rodney2023采纳,获得30
9秒前
芽卉完成签到,获得积分10
9秒前
10秒前
NexusExplorer应助liviawong采纳,获得10
11秒前
无花果应助13221采纳,获得10
11秒前
12秒前
Ava应助白一陈采纳,获得10
12秒前
科研混子发布了新的文献求助20
12秒前
量子星尘发布了新的文献求助10
12秒前
banksy完成签到,获得积分10
12秒前
bio_w完成签到,获得积分10
13秒前
烟花应助笑点低的忆灵采纳,获得10
14秒前
Orange应助笑点低的忆灵采纳,获得10
14秒前
16秒前
科研通AI6应助徐成建采纳,获得30
18秒前
18秒前
19秒前
mimimi发布了新的文献求助10
19秒前
19秒前
lightman完成签到,获得积分10
19秒前
乐乐应助高挑的尔阳采纳,获得30
20秒前
Akim应助高挑的尔阳采纳,获得10
20秒前
哩哩啦啦完成签到 ,获得积分10
20秒前
Mic应助Revive采纳,获得10
21秒前
21秒前
21秒前
小喵007完成签到,获得积分10
22秒前
yy完成签到,获得积分10
23秒前
Du完成签到,获得积分10
23秒前
23秒前
如履平川完成签到 ,获得积分10
23秒前
rodney2023发布了新的文献求助30
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547574
求助须知:如何正确求助?哪些是违规求助? 4633043
关于积分的说明 14629186
捐赠科研通 4574618
什么是DOI,文献DOI怎么找? 2508426
邀请新用户注册赠送积分活动 1484866
关于科研通互助平台的介绍 1455963