清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Electrochemical Sensing Mechanisms and Interfacial Design Strategies of Mesoporous Nanochannel Membranes in Biosensing Applications

纳米技术 生物传感器 介孔材料 电化学 材料科学 化学 电极 有机化学 生物化学 物理化学 催化作用
作者
Hui Zeng,Kang Liang,Lei Jiang,Dongyuan Zhao,Biao Kong
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00764
摘要

ConspectusPrecise and rapid detection of key biomolecules is crucial for early clinical diagnosis. These critical biomolecules and biomarkers are typically present at low concentrations within complex environments, presenting significant challenges for their accurate and reliable detection. Nowadays, electrochemical sensors based on nanochannel membranes have attracted significant attention due to their high sensitivity, simplicity, rapid response, and label-free point-of-care detection capabilities. The confined arena provided by the nanochannels for target recognition and interactions facilitates detection and signal amplification, leading to enhanced detection performance. The nanochannel membranes also can act as filters to repel the interferents and enable target detection in more complex environments. Thus, sensors based on nanochannel membranes are considered promising platforms for biosensing applications. However, challenges such as uncontrollable structures and unstable performance in some materials limit their applications and theoretical advancements. To investigate the relationship between architecture and sensing performance and to achieve reliable and efficient performance, it is essential to construct sensors with precise nanostructures possessing stable properties. With the development of nanomaterials technology, mesoporous nanochannel membranes with robust, controllable, and ordered mesostructures, along with tunable surface properties and tailored ion transport dynamics, have emerged as promising candidates for achieving reliable and efficient biosensing performance. Additionally, investigating the sensing mechanisms and key influencing factors will provide valuable insights into optimizing sensor architecture and enhancing the efficiency and reliability of biosensing technologies. In this Account, we highlight substantial advancements in mesoporous nanochannel membranes, which are mainly based on the research work published by our group. In the first section, we explore the underlying mechanisms of the sensing processes, including the solid-liquid interfacial interactions and nanoconfinement effects (i.e., electrostatic interactions, hydrophilic/hydrophobic interactions, and steric hindrance effects). We also delve into the key parameters including geometry, materials, recognition elements, and external factors related to mesoporous nanochannel membranes and their impacts on sensing mechanisms and performance. In particular, we point out that mesoporous nanochannel membranes with three-dimensional interconnected networks can facilitate ion penetration and lead to an increased number of binding sites, contributing to high sensitivity. Additionally, composite or multilevel mesoporous nanochannel membranes, particularly when integrated with external stimuli such as pH, light, and heat, can introduce unexpected properties, enhancing the sensing performance. These understandings provide valuable insights into the fundamental principles and influencing factors pertinent to the research and design of intelligent, high-quality sensors or nanofluidic devices. Furthermore, we conduct an analysis of integrating various biosensing mechanisms and strategies, which offers significant opportunities for biomedical monitoring, disease diagnosis, and the pharmaceutical industry. Finally, we describe future research directions and their potential for commercial adoption. Nanochannel sensors with novel structures, properties, and functional porous materials may lead to new trends in biomedical applications, including self-powered and wearable sensors for disease monitoring. We believe that this Account holds implications for promoting interdisciplinary endeavors encompassing chemistry and materials science and nanotechnology as well as analysis, biosensing, and biomedical science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助wol007采纳,获得10
1秒前
1秒前
庄怀逸完成签到 ,获得积分10
1分钟前
蛋卷完成签到 ,获得积分10
1分钟前
浅辰完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
xiaoyi完成签到,获得积分10
2分钟前
chengmin完成签到 ,获得积分10
2分钟前
xiaoyi发布了新的文献求助10
2分钟前
滕皓轩完成签到 ,获得积分10
2分钟前
午后狂睡完成签到 ,获得积分10
2分钟前
跳跃的鹏飞完成签到 ,获得积分10
2分钟前
3分钟前
lanxinge完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
StonesKing发布了新的文献求助10
3分钟前
偷得浮生半日闲完成签到 ,获得积分10
3分钟前
3分钟前
上官若男应助xiaoyi采纳,获得10
3分钟前
Skywings完成签到,获得积分10
3分钟前
朴素海亦完成签到 ,获得积分10
3分钟前
Barid完成签到,获得积分10
3分钟前
juliar完成签到 ,获得积分10
4分钟前
初心完成签到 ,获得积分10
4分钟前
heher完成签到 ,获得积分10
5分钟前
5分钟前
wol007发布了新的文献求助10
5分钟前
tao ism完成签到 ,获得积分10
5分钟前
袁雪蓓完成签到 ,获得积分10
5分钟前
老石完成签到 ,获得积分10
5分钟前
名侦探柯基完成签到 ,获得积分10
6分钟前
娜娜完成签到 ,获得积分10
6分钟前
zzzzzz完成签到 ,获得积分10
6分钟前
wol007完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
violetlishu完成签到 ,获得积分10
7分钟前
海阔天空完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776014
求助须知:如何正确求助?哪些是违规求助? 3321534
关于积分的说明 10206239
捐赠科研通 3036609
什么是DOI,文献DOI怎么找? 1666373
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805