亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electrochemical Sensing Mechanisms and Interfacial Design Strategies of Mesoporous Nanochannel Membranes in Biosensing Applications

纳米技术 生物传感器 介孔材料 电化学 材料科学 化学 电极 有机化学 生物化学 物理化学 催化作用
作者
Hui Zeng,Kang Liang,Lei Jiang,Dongyuan Zhao,Biao Kong
出处
期刊:Accounts of Chemical Research [American Chemical Society]
被引量:6
标识
DOI:10.1021/acs.accounts.4c00764
摘要

ConspectusPrecise and rapid detection of key biomolecules is crucial for early clinical diagnosis. These critical biomolecules and biomarkers are typically present at low concentrations within complex environments, presenting significant challenges for their accurate and reliable detection. Nowadays, electrochemical sensors based on nanochannel membranes have attracted significant attention due to their high sensitivity, simplicity, rapid response, and label-free point-of-care detection capabilities. The confined arena provided by the nanochannels for target recognition and interactions facilitates detection and signal amplification, leading to enhanced detection performance. The nanochannel membranes also can act as filters to repel the interferents and enable target detection in more complex environments. Thus, sensors based on nanochannel membranes are considered promising platforms for biosensing applications. However, challenges such as uncontrollable structures and unstable performance in some materials limit their applications and theoretical advancements. To investigate the relationship between architecture and sensing performance and to achieve reliable and efficient performance, it is essential to construct sensors with precise nanostructures possessing stable properties. With the development of nanomaterials technology, mesoporous nanochannel membranes with robust, controllable, and ordered mesostructures, along with tunable surface properties and tailored ion transport dynamics, have emerged as promising candidates for achieving reliable and efficient biosensing performance. Additionally, investigating the sensing mechanisms and key influencing factors will provide valuable insights into optimizing sensor architecture and enhancing the efficiency and reliability of biosensing technologies. In this Account, we highlight substantial advancements in mesoporous nanochannel membranes, which are mainly based on the research work published by our group. In the first section, we explore the underlying mechanisms of the sensing processes, including the solid-liquid interfacial interactions and nanoconfinement effects (i.e., electrostatic interactions, hydrophilic/hydrophobic interactions, and steric hindrance effects). We also delve into the key parameters including geometry, materials, recognition elements, and external factors related to mesoporous nanochannel membranes and their impacts on sensing mechanisms and performance. In particular, we point out that mesoporous nanochannel membranes with three-dimensional interconnected networks can facilitate ion penetration and lead to an increased number of binding sites, contributing to high sensitivity. Additionally, composite or multilevel mesoporous nanochannel membranes, particularly when integrated with external stimuli such as pH, light, and heat, can introduce unexpected properties, enhancing the sensing performance. These understandings provide valuable insights into the fundamental principles and influencing factors pertinent to the research and design of intelligent, high-quality sensors or nanofluidic devices. Furthermore, we conduct an analysis of integrating various biosensing mechanisms and strategies, which offers significant opportunities for biomedical monitoring, disease diagnosis, and the pharmaceutical industry. Finally, we describe future research directions and their potential for commercial adoption. Nanochannel sensors with novel structures, properties, and functional porous materials may lead to new trends in biomedical applications, including self-powered and wearable sensors for disease monitoring. We believe that this Account holds implications for promoting interdisciplinary endeavors encompassing chemistry and materials science and nanotechnology as well as analysis, biosensing, and biomedical science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清风朗月完成签到,获得积分10
12秒前
yuanshuai完成签到,获得积分20
25秒前
我是老大应助王欣采纳,获得10
54秒前
CodeCraft应助归陌采纳,获得10
55秒前
所所应助yuanshuai采纳,获得10
1分钟前
1分钟前
1分钟前
归陌发布了新的文献求助10
1分钟前
王欣发布了新的文献求助10
1分钟前
1分钟前
七色光完成签到,获得积分10
1分钟前
1分钟前
SciGPT应助药石无医采纳,获得10
1分钟前
学术小白完成签到,获得积分10
1分钟前
1分钟前
上官若男应助林林采纳,获得10
1分钟前
药石无医发布了新的文献求助10
1分钟前
药石无医完成签到,获得积分10
1分钟前
王欣完成签到 ,获得积分10
1分钟前
2分钟前
zzz发布了新的文献求助10
2分钟前
Phaladius发布了新的文献求助10
2分钟前
威武鸵鸟完成签到,获得积分20
2分钟前
完美的八宝粥完成签到,获得积分10
2分钟前
潇洒板栗完成签到,获得积分20
3分钟前
Phaladius完成签到 ,获得积分10
3分钟前
科研通AI6应助潇洒板栗采纳,获得10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
jyy完成签到,获得积分10
3分钟前
3分钟前
Shuo应助狗熊岭的熊三三采纳,获得10
3分钟前
岸在海的深处完成签到 ,获得积分0
3分钟前
自由从筠发布了新的文献求助10
3分钟前
冬雾完成签到 ,获得积分10
3分钟前
Iris完成签到 ,获得积分10
3分钟前
起风了完成签到 ,获得积分10
4分钟前
周肆完成签到 ,获得积分10
4分钟前
寡核苷酸小白完成签到 ,获得积分10
4分钟前
4分钟前
林林发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4498049
求助须知:如何正确求助?哪些是违规求助? 3949413
关于积分的说明 12244405
捐赠科研通 3607553
什么是DOI,文献DOI怎么找? 1984588
邀请新用户注册赠送积分活动 1020942
科研通“疑难数据库(出版商)”最低求助积分说明 913347