A multi-sequence MRI-based hierarchical expert diagnostic method for the molecular subtype of breast cancer

乳腺癌 序列(生物学) 计算机科学 人工智能 癌症 医学 计算生物学 内科学 生物 遗传学
作者
Hongyu Wang,Yanfang Hao,Pingping Wang,Erjuan Wang,Songtao Ding,Baoying Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/jbhi.2024.3486182
摘要

Breast cancer is one of the cancers of deep concern worldwide, and the molecular subtype of breast cancer is significant for patients' treatment selection, and prognosis judgment. The application of multi-sequence MRI technology provides a new non-invasive companion diagnostic method for molecular subtypes of breast cancer, which can more accurately assess the vascular status of tumors and reveal fine structures. However, providing interpretable classification results remains a challenge. Recently, although many convolutional neural network (CNN) methods and fine-grained classification methods based on MRI inputs have been proposed. However, most of these methods operate in a 'black-box' without a detailed explanation of the intermediate processes, resulting in a lack of interpretability of the breast cancer classification process. To address this problem, our study proposes a multi-sequence MRI-based hierarchical expert diagnostic method for the molecular subtype of breast cancer. With the strong differentiation module, this method first identifies enhanced features in breast tumors, ensuring that the subsequent classification process is precisely focused on the lesion features. In addition, inspired by the codiagnosis of multiple experts in clinical diagnosis, we set up a mechanism of collaborative diagnostic corrective learning by hierarchical experts to provide an interpretable classification process. Compared with previous studies, the framework learns features with a strong distinguishing ability for breast tumor classification. Specifically, multiple experts corrected each other's learning to give more accurate and interpretable classification results, significantly improving clinical diagnosis's practical value. We conducted extensive experiments on a breast dataset and compared it quantitatively with other methods, and we achieved the best performance in terms of accuracy (0.889) and F1 Score (0.893).We make the code public on GitHub: https://github.com/yanfangHao/HED.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yikefan发布了新的文献求助10
1秒前
1秒前
张新宇完成签到,获得积分10
1秒前
1秒前
李明泰发布了新的文献求助10
2秒前
云上人发布了新的文献求助10
3秒前
乐乐应助柳沙鸣采纳,获得10
3秒前
吃瓜米吃瓜米完成签到 ,获得积分10
4秒前
5秒前
5秒前
搞怪冷之完成签到 ,获得积分10
5秒前
我是老大应助RC_Wang采纳,获得10
6秒前
赵赵发布了新的文献求助10
6秒前
6秒前
6秒前
修管子完成签到,获得积分10
6秒前
张新宇发布了新的文献求助10
7秒前
今后应助李明泰采纳,获得10
7秒前
lbw完成签到 ,获得积分10
7秒前
海绵宝宝发布了新的文献求助10
8秒前
8秒前
heiye完成签到,获得积分10
8秒前
科研通AI6应助Glorious采纳,获得10
9秒前
脑洞疼应助我想查文献采纳,获得10
10秒前
jingjing完成签到,获得积分10
10秒前
gqwe发布了新的文献求助10
10秒前
车间我发布了新的文献求助10
10秒前
angell发布了新的文献求助10
10秒前
花花完成签到,获得积分10
11秒前
dsv发布了新的文献求助10
11秒前
搞怪冷之关注了科研通微信公众号
13秒前
perfumei完成签到,获得积分10
13秒前
罗大大发布了新的文献求助10
13秒前
研友_VZG7GZ应助liuuuuu采纳,获得10
14秒前
14秒前
雨齐完成签到,获得积分10
14秒前
李明泰完成签到,获得积分10
16秒前
酷波er应助yangjun采纳,获得10
16秒前
16秒前
鸡蛋完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914