已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A multi-sequence MRI-based hierarchical expert diagnostic method for the molecular subtype of breast cancer

乳腺癌 序列(生物学) 计算机科学 人工智能 癌症 医学 计算生物学 内科学 生物 遗传学
作者
Hongyu Wang,Yanfang Hao,Pingping Wang,Erjuan Wang,Songtao Ding,Baoying Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3486182
摘要

Breast cancer is one of the cancers of deep concern worldwide, and the molecular subtype of breast cancer is significant for patients' treatment selection, and prognosis judgment. The application of multi-sequence MRI technology provides a new non-invasive companion diagnostic method for molecular subtypes of breast cancer, which can more accurately assess the vascular status of tumors and reveal fine structures. However, providing interpretable classification results remains a challenge. Recently, although many convolutional neural network (CNN) methods and fine-grained classification methods based on MRI inputs have been proposed. However, most of these methods operate in a 'black-box' without a detailed explanation of the intermediate processes, resulting in a lack of interpretability of the breast cancer classification process. To address this problem, our study proposes a multi-sequence MRI-based hierarchical expert diagnostic method for the molecular subtype of breast cancer. With the strong differentiation module, this method first identifies enhanced features in breast tumors, ensuring that the subsequent classification process is precisely focused on the lesion features. In addition, inspired by the codiagnosis of multiple experts in clinical diagnosis, we set up a mechanism of collaborative diagnostic corrective learning by hierarchical experts to provide an interpretable classification process. Compared with previous studies, the framework learns features with a strong distinguishing ability for breast tumor classification. Specifically, multiple experts corrected each other's learning to give more accurate and interpretable classification results, significantly improving clinical diagnosis's practical value. We conducted extensive experiments on a breast dataset and compared it quantitatively with other methods, and we achieved the best performance in terms of accuracy (0.889) and F1 Score (0.893).We make the code public on GitHub: https://github.com/yanfangHao/HED.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SPLjoker完成签到 ,获得积分10
刚刚
orange9发布了新的文献求助10
1秒前
3秒前
7秒前
苹果笑寒完成签到 ,获得积分10
8秒前
婕婕子完成签到,获得积分10
8秒前
CXC完成签到,获得积分10
9秒前
黄筱妍发布了新的文献求助10
10秒前
泶1完成签到,获得积分10
11秒前
11秒前
跳跳虎完成签到,获得积分20
12秒前
YSM给xzy998的求助进行了留言
14秒前
14秒前
Kayla完成签到 ,获得积分10
14秒前
康师傅冰红茶完成签到 ,获得积分10
16秒前
17秒前
tx完成签到,获得积分10
18秒前
小航完成签到 ,获得积分10
20秒前
20秒前
xxxxxxx发布了新的文献求助10
22秒前
结实的老黑完成签到 ,获得积分10
24秒前
陶醉的烤鸡完成签到 ,获得积分10
24秒前
失眠的霸完成签到,获得积分10
26秒前
结实的老黑关注了科研通微信公众号
28秒前
华仔应助那一片海采纳,获得10
29秒前
清逸完成签到 ,获得积分10
34秒前
小二郎应助科研通管家采纳,获得10
34秒前
34秒前
Jasper应助科研通管家采纳,获得10
34秒前
Xdz完成签到 ,获得积分10
36秒前
渡己完成签到 ,获得积分10
36秒前
lizhiqian2024发布了新的文献求助10
39秒前
40秒前
爆米花应助LIGNET采纳,获得10
41秒前
SciGPT应助xxxxxxx采纳,获得10
42秒前
加鲁鲁完成签到 ,获得积分10
42秒前
华理附院孙文博完成签到 ,获得积分10
47秒前
非泥完成签到,获得积分10
50秒前
xxxxxxx完成签到,获得积分20
50秒前
发发发发发完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782572
求助须知:如何正确求助?哪些是违规求助? 3327957
关于积分的说明 10234005
捐赠科研通 3042953
什么是DOI,文献DOI怎么找? 1670358
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758919