DiffGraph: Heterogeneous Graph Diffusion Model

图形 扩散 计算机科学 理论计算机科学 物理 热力学
作者
Zongwei Li,Lianghao Xia,Hua Hua,Shijie Zhang,Shuangyang Wang,Chao Huang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.02313
摘要

Recent advances in Graph Neural Networks (GNNs) have revolutionized graph-structured data modeling, yet traditional GNNs struggle with complex heterogeneous structures prevalent in real-world scenarios. Despite progress in handling heterogeneous interactions, two fundamental challenges persist: noisy data significantly compromising embedding quality and learning performance, and existing methods' inability to capture intricate semantic transitions among heterogeneous relations, which impacts downstream predictions. To address these fundamental issues, we present the Heterogeneous Graph Diffusion Model (DiffGraph), a pioneering framework that introduces an innovative cross-view denoising strategy. This advanced approach transforms auxiliary heterogeneous data into target semantic spaces, enabling precise distillation of task-relevant information. At its core, DiffGraph features a sophisticated latent heterogeneous graph diffusion mechanism, implementing a novel forward and backward diffusion process for superior noise management. This methodology achieves simultaneous heterogeneous graph denoising and cross-type transition, while significantly simplifying graph generation through its latent-space diffusion capabilities. Through rigorous experimental validation on both public and industrial datasets, we demonstrate that DiffGraph consistently surpasses existing methods in link prediction and node classification tasks, establishing new benchmarks for robustness and efficiency in heterogeneous graph processing. The model implementation is publicly available at: https://github.com/HKUDS/DiffGraph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Rookie发布了新的文献求助10
5秒前
5秒前
starleo完成签到,获得积分10
6秒前
王佳豪发布了新的文献求助10
10秒前
Rookie完成签到,获得积分10
11秒前
充电宝应助w934420513采纳,获得10
13秒前
16秒前
16秒前
babe完成签到 ,获得积分10
17秒前
17秒前
丘比特应助如意草丛采纳,获得10
19秒前
胡蝶发布了新的文献求助10
21秒前
小周发布了新的文献求助10
21秒前
zombleq发布了新的文献求助10
23秒前
24秒前
852应助ltt采纳,获得10
24秒前
王婷静完成签到,获得积分20
27秒前
28秒前
如意草丛发布了新的文献求助10
29秒前
Aurora完成签到,获得积分10
31秒前
w934420513发布了新的文献求助10
33秒前
zhy完成签到,获得积分20
33秒前
36秒前
37秒前
39秒前
Annabelle发布了新的文献求助10
39秒前
金桔儿完成签到,获得积分10
40秒前
Hello应助科研通管家采纳,获得10
41秒前
思源应助科研通管家采纳,获得10
42秒前
完美世界应助科研通管家采纳,获得10
42秒前
蔡天慧应助科研通管家采纳,获得10
42秒前
852应助科研通管家采纳,获得10
42秒前
小二郎应助科研通管家采纳,获得10
42秒前
lynn应助科研通管家采纳,获得10
42秒前
乐乐应助科研通管家采纳,获得10
42秒前
lwl666应助科研通管家采纳,获得10
42秒前
Ava应助科研通管家采纳,获得10
42秒前
42秒前
HD应助科研通管家采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366