清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Runtime Analysis of Typical Decomposition Approaches in MOEA/D for Many-Objective Optimization Problems

分解 计算机科学 数学优化 多目标优化 进化算法 数学 化学 有机化学
作者
Zhengxin Huang,Yanwen Zhou,Zefeng Chen,Qianlong Dang
出处
期刊:Evolutionary Computation [MIT Press]
卷期号:: 1-32
标识
DOI:10.1162/evco_a_00364
摘要

Abstract Decomposition-based multi-objective evolutionary algorithms (MOEAs) are popular methods utilized to address many-objective optimization problems (MaOPs). These algorithms decompose the original MaOP into several scalar optimization subproblems, and solve them to obtain a set of solutions to approximate the Pareto front (PF). The decomposition approach is an important component in them. This paper presents a runtime analysis of a MOEA based on the classic decomposition framework using the typical weighted sum (WS), Tchebycheff (TCH), and penalty-based boundary intersection (PBI) approaches to obtain an optimal solution for any subproblem of two pseudo-Boolean benchmark MaOPs, namely mLOTZ and mCOCZ. Due to the complexity and limitation of the theoretical analysis techniques, the analyzed algorithm employs one-bit mutation to generate offspring individuals. The results indicate that when using WS, the analyzed algorithm can consistently find an optimal solution for every subproblem, which is located in the PF, in polynomial expected runtime. In contrast, the algorithm requires at least exponential expected runtime (with respect to the number of objectives m) for certain subproblems when using TCH or PBI, even though the landscapes of all objective functions in the two benchmarks are strictly monotone. Moreover, this analysis reveals a drawback of using WS: the optimal solutions obtained by solving subproblems are more easily mapped to the same point in the PF, compared to the case of using TCH. When using PBI, a smaller value of the penalty parameter is a good choice for faster convergence to the PF but may compromise diversity. To further understand the impact of these approaches in practical algorithms, numerical experiments on using bit-wise mutation to generate offspring individuals are conducted. The findings of this study may be helpful for designing more efficient decomposition approaches for MOEAs in future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
慈祥的忆寒完成签到,获得积分10
10秒前
24秒前
39秒前
47秒前
1分钟前
1分钟前
1分钟前
ZH的天方夜谭完成签到,获得积分20
1分钟前
2分钟前
jyy发布了新的文献求助30
2分钟前
NexusExplorer应助yicui采纳,获得10
2分钟前
2分钟前
yicui发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
老老熊完成签到,获得积分10
3分钟前
TXZ06完成签到,获得积分10
3分钟前
方白秋完成签到,获得积分0
4分钟前
懒洋洋发布了新的文献求助10
4分钟前
4分钟前
外向的妍完成签到,获得积分10
4分钟前
4分钟前
4分钟前
手可摘星陈同学完成签到 ,获得积分10
5分钟前
无敌小狐发布了新的文献求助10
5分钟前
科研通AI6应助Iusolite采纳,获得10
5分钟前
minnie发布了新的文献求助10
5分钟前
lihuiying5aini完成签到,获得积分10
5分钟前
波里舞完成签到 ,获得积分10
5分钟前
独特的师完成签到,获得积分10
6分钟前
大医仁心完成签到 ,获得积分10
7分钟前
minnie完成签到 ,获得积分10
7分钟前
TonyLee完成签到,获得积分10
7分钟前
8分钟前
9分钟前
Alisha完成签到,获得积分10
9分钟前
10分钟前
老石完成签到 ,获得积分10
10分钟前
博弈完成签到 ,获得积分10
10分钟前
yxy完成签到 ,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622339
求助须知:如何正确求助?哪些是违规求助? 4707495
关于积分的说明 14939101
捐赠科研通 4770867
什么是DOI,文献DOI怎么找? 2552310
邀请新用户注册赠送积分活动 1514378
关于科研通互助平台的介绍 1475088