Sparse Gaussian process based machine learning first principles potentials for materials simulations: Application to batteries, solar cells, catalysts, and macromolecular systems

过程(计算) 高斯过程 计算机科学 催化作用 人工智能 工艺工程 高斯分布 材料科学 纳米技术 生化工程 机器学习 生物系统 化学 工程类 计算化学 有机化学 生物 操作系统
作者
Soohaeng Yoo Willow,Amir Hajibabaei,Miran Ha,D. ChangMo Yang,Chang Woo Myung,Seung Kyu Min,Geunsik Lee,Kwang S. Kim
出处
期刊:Chemical physics reviews [American Institute of Physics]
卷期号:5 (4) 被引量:5
标识
DOI:10.1063/5.0231265
摘要

To design new materials and understand their novel phenomena, it is imperative to predict the structure and properties of materials that often rely on first-principles theory. However, such methods are computationally demanding and limited to small systems. This topical review investigates machine learning (ML) approaches, specifically non-parametric sparse Gaussian process regression (SGPR), to model the potential energy surface (PES) of materials, while starting from the basics of ML methods for a comprehensive review. SGPR can efficiently represent PES with minimal ab initio data, significantly reducing the computational costs by bypassing the need for inverting massive covariance matrices. SGPR rank reduction accelerates density functional theory calculations by orders of magnitude, enabling accelerated simulations. An optimal adaptive sampling algorithm is utilized for on-the-fly regression with molecular dynamics, extending to interatomic potentials through scalable SGPR formalism. Through merging quantum mechanics with ML methods, the universal first-principles SGPR-based ML potential can create a digital-twin capable of predicting phenomena arising from static and dynamic changes as well as inherent and collective characteristics of materials. These techniques have been applied successfully to materials such as solid electrolytes, lithium-ion batteries, electrocatalysts, solar cells, and macromolecular systems, reproducing their structures, energetics, dynamics, properties, phase-changes, materials performance, and device efficiency. This review discusses the built-in library universal first-principles SGPR-based ML potential, showcasing its applications and successes, offering insights into the development of future ML potentials and their applications in advanced materials, catering to both educational and expert readers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元谷雪应助yangyang采纳,获得10
刚刚
冷冷暴力发布了新的文献求助10
1秒前
李霞客完成签到,获得积分10
1秒前
ncjdoi发布了新的文献求助10
2秒前
3秒前
Julo发布了新的文献求助10
4秒前
淡然的凉面完成签到,获得积分20
5秒前
时尚傲之完成签到,获得积分10
7秒前
9秒前
ding应助来自星星的me采纳,获得10
11秒前
鸡哥发布了新的文献求助10
12秒前
桐桐应助aser采纳,获得10
13秒前
充电宝应助guo采纳,获得10
13秒前
dej完成签到,获得积分10
14秒前
Julo完成签到,获得积分10
15秒前
15秒前
Nauyt完成签到 ,获得积分10
16秒前
17秒前
田圭完成签到,获得积分20
17秒前
cdercder应助zorro3574采纳,获得10
18秒前
liang白开应助木木采纳,获得10
18秒前
19秒前
19秒前
搜集达人应助sff采纳,获得10
19秒前
搜集达人应助Linda采纳,获得10
19秒前
胡燕发布了新的文献求助100
21秒前
21秒前
懒汉完成签到,获得积分10
21秒前
wxy发布了新的文献求助20
22秒前
士兵许三多完成签到,获得积分10
22秒前
22秒前
斯文败类应助dique3hao采纳,获得10
23秒前
23秒前
斯文败类应助子云采纳,获得10
23秒前
九儿完成签到 ,获得积分10
24秒前
几酝完成签到 ,获得积分10
24秒前
Serena发布了新的文献求助10
24秒前
ytolll发布了新的文献求助10
25秒前
25秒前
星辰大海应助aser采纳,获得10
26秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Synthesis of Solid Catalysts 200
半导体金属氧化物纳米材料:合成、气敏特性及气体传感应用 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832896
求助须知:如何正确求助?哪些是违规求助? 3375313
关于积分的说明 10488554
捐赠科研通 3094944
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819788
科研通“疑难数据库(出版商)”最低求助积分说明 771623