已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Fault Diagnosis Method for Rotor-Bearing System Based on Instantaneous Orbit Fusion Feature Image and Deep Convolutional Neural Network

卷积神经网络 方位(导航) 计算机科学 断层(地质) 转子(电动) 特征(语言学) 人工智能 特征提取 模式识别(心理学) 轨道(动力学) 控制理论(社会学) 深度学习 工程类 航空航天工程 机械工程 地质学 哲学 地震学 控制(管理) 语言学
作者
Xiaolong Cui,Yifan Wu,Xiaoyuan Zhang,Jie Huang,Pak Kin Wong,Chaoshun Li
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:28 (2): 1013-1024 被引量:16
标识
DOI:10.1109/tmech.2022.3214505
摘要

The rotor-bearing system of large rotating machinery has multiple bearings with complex vibration correlations, which significantly affect the effectiveness of intelligent diagnosis in industrial production. In this article, a new framework of fault diagnosis for the rotor with multiple bearings is proposed. The framework is composed of two parts: 1) instantaneous orbit feature fusion image construction; 2) the deep convolutional network based on transfer learning. The multivariate complex variational mode decomposition (MCVMD) is adopted to decompose the complex-valued signals of multiple bearings, which can make full use of the joint information between signals by considering the axis orbit of each bearing simultaneously. To our best knowledge, it is the first attempt of applying MCVMD to the field of fault diagnosis. Then, multiple orbit features are derived from the decomposed signals to reflect the transient state of vibration. Finally, the fusion feature images, constructed by the orbit features of multiple bearings, can exhaustively present the overall status of the rotor-bearing system. Parameter transfer is used for the deep convolutional network to solve the time-consuming training problem. The experiment and verification is carried out on three steam turbines and the pumped storage unit. The results demonstrate that the proposed method outperforms the existing approaches based on the original signal, frequency, or time-frequency features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kristine完成签到 ,获得积分10
刚刚
1秒前
xzy发布了新的文献求助20
1秒前
完美世界应助神外王001采纳,获得20
2秒前
平淡安容完成签到 ,获得积分10
2秒前
Hello应助Arsenc采纳,获得10
2秒前
Vitana应助祎橘采纳,获得10
3秒前
4秒前
泌外科研发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
Hello应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
核桃应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得20
9秒前
斯文败类应助宝玉采纳,获得10
10秒前
doly发布了新的文献求助50
10秒前
Chaos发布了新的文献求助10
11秒前
香蕉连虎发布了新的文献求助10
11秒前
11秒前
zjzjZzz发布了新的文献求助10
12秒前
炊饼完成签到,获得积分10
13秒前
CodeCraft应助新的旅程采纳,获得10
15秒前
墨鱼丸完成签到 ,获得积分10
16秒前
Demi发布了新的文献求助10
16秒前
GingerF应助司徒寒烟采纳,获得50
17秒前
CipherSage应助巫堵采纳,获得10
18秒前
李健应助liuyuignore采纳,获得10
20秒前
胜天半子完成签到,获得积分10
21秒前
Meyako应助小安采纳,获得20
22秒前
25秒前
26秒前
sunwb发布了新的文献求助10
27秒前
Johnny完成签到,获得积分10
27秒前
28秒前
新的旅程发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4374547
求助须知:如何正确求助?哪些是违规求助? 3871109
关于积分的说明 12066110
捐赠科研通 3513838
什么是DOI,文献DOI怎么找? 1928332
邀请新用户注册赠送积分活动 969987
科研通“疑难数据库(出版商)”最低求助积分说明 868776