已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-Based Accurate Analysis of cTnI With Alphalisa Immunoassay Enabled Centrifugal Microfluidic System

肌钙蛋白I 计算机科学 灵敏度(控制系统) 人工智能 信号处理 免疫分析 信号(编程语言) 机器学习 模式识别(心理学) 算法 电子工程 心肌梗塞 数字信号处理 工程类 医学 精神科 计算机硬件 抗体 程序设计语言 免疫学
作者
Yuxing Shi,Chuang Wang,Bochen Xiong,Yiqiang Hou,Peng Ye,Jinhong Guo
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (3): 630-636 被引量:2
标识
DOI:10.1109/tnb.2022.3224484
摘要

Cardiac troponin (cTnI) is a biomarker with high sensitivity and specificity for acute myocardial infarction (AMI). Rapid and accurate detection of cTnI can effectively reduce the mortality of AMI. Aiming at the problems of complex operation and low sensitivity of traditional methods used to detect cTnI, an Alphalisa immunoassay enabled centrifugal microfluidic system (AIECMS) is designed to detect cTnI quickly with high sensitivity, and good accuracy is achieved in the linear range of 0.1 ng/mL-50 ng/mL. However, in order to realize the detection of hypersensitive cTnI (the definition standard of weak positive and negative is 0.08 ng/mL), it is necessary to further improve the accuracy of qualitative detection. Since the signal curve of the system for reagents of low concentration range is relatively close, the system can not accurately distinguish weak positive and negative samples, which is easy to cause misjudgment of detection results. In order to solve this problem, this paper proposes to apply machine learning to the signal processing detected by AIECMS for the first time. Firstly, different pre-processing is done according to the characteristics of biological signals; Secondly, different machine learning algorithms are used to train and test the data, and the classification of four clinically significant concentrations (0.02 ng/mL, 0.04 ng/mL, 0.08 ng/mL and 0.1 ng/mL) is realized. Finally, combining the performance of various algorithms, algorithm cost and clinical requirements for the accuracy of low concentration classification, we choose random forest (accuracy 92%) to accurately distinguish the weak positive and negative samples of cTnI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助蜡笔小新采纳,获得10
5秒前
7秒前
7秒前
任性铅笔完成签到 ,获得积分10
11秒前
恒仔发布了新的文献求助10
13秒前
Criminology34应助小章采纳,获得10
14秒前
我爱科研完成签到 ,获得积分10
14秒前
14秒前
可靠书白完成签到,获得积分10
15秒前
酷炫的尔丝完成签到 ,获得积分10
16秒前
20秒前
科研通AI6应助syc采纳,获得10
21秒前
等待戈多完成签到,获得积分10
23秒前
huenguyenvan完成签到,获得积分10
24秒前
26秒前
乐观完成签到 ,获得积分10
29秒前
30秒前
成就念芹完成签到,获得积分10
31秒前
35秒前
时不言完成签到 ,获得积分10
39秒前
科研通AI6应助科研通管家采纳,获得30
39秒前
浮游应助科研通管家采纳,获得10
39秒前
天天快乐应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
Jasper应助科研通管家采纳,获得10
39秒前
华仔应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
39秒前
浮游应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
41秒前
iiuu完成签到,获得积分10
42秒前
Hello应助王瑾言采纳,获得10
42秒前
43秒前
东篱完成签到 ,获得积分10
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522443
求助须知:如何正确求助?哪些是违规求助? 4613434
关于积分的说明 14538832
捐赠科研通 4551149
什么是DOI,文献DOI怎么找? 2494023
邀请新用户注册赠送积分活动 1475048
关于科研通互助平台的介绍 1446425