Further predictive value of lymphovascular invasion explored via supervised deep learning for lymph node metastases in breast cancer

淋巴血管侵犯 医学 淋巴结 乳腺癌 放射科 H&E染色 逻辑回归 癌症 肿瘤科 内科学 病理 转移 免疫组织化学
作者
Jiamei Chen,Yang Yang,Bo Luo,Yaofeng Wen,Qingzhong Chen,Ru Ma,Zhen Huang,Hangjia Zhu,Yan Li,Yongshun Chen,Dahong Qian
出处
期刊:Human Pathology [Elsevier BV]
卷期号:131: 26-37 被引量:6
标识
DOI:10.1016/j.humpath.2022.11.007
摘要

Lymphovascular invasion, specifically lymph-blood vessel invasion (LBVI), is a risk factor for metastases in breast invasive ductal carcinoma (IDC) and is routinely screened using hematoxylin-eosin histopathological images. However, routine reports only describe whether LBVI is present and does not provide other potential prognostic information of LBVI. This study aims to evaluate the clinical significance of LBVI in 685 IDC cases and explore the added predictive value of LBVI on lymph node metastases (LNM) via supervised deep learning (DL), an expert-experience embedded knowledge transfer learning (EEKT) model in 40 LBVI-positive cases signed by the routine report. Multivariate logistic regression and propensity score matching analysis demonstrated that LBVI (OR 4.203, 95% CI 2.809-6.290, P < 0.001) was a significant risk factor for LNM. Then, the EEKT model trained on 5780 image patches automatically segmented LBVI with a patch-wise Dice similarity coefficient of 0.930 in the test set and output counts, location, and morphometric features of the LBVIs. Some morphometric features were beneficial for further stratification within the 40 LBVI-positive cases. The results showed that LBVI in cases with LNM had a higher short-to-long side ratio of the minimum rectangle (MR) (0.686 vs. 0.480, P = 0.001), LBVI-to-MR area ratio (0.774 vs. 0.702, P = 0.002), and solidity (0.983 vs. 0.934, P = 0.029) compared to LBVI in cases without LNM. The results highlight the potential of DL to assist pathologists in quantifying LBVI and, more importantly, in exploring added prognostic information from LBVI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子完成签到,获得积分10
刚刚
吴zzzz发布了新的文献求助10
刚刚
duonicola发布了新的文献求助10
1秒前
拾星完成签到 ,获得积分10
2秒前
Hello应助Ttimer采纳,获得20
3秒前
蓝丝绒完成签到,获得积分20
4秒前
4秒前
4秒前
fenfen好学完成签到,获得积分10
4秒前
浩纳完成签到,获得积分10
4秒前
完美芒果完成签到,获得积分20
5秒前
澳臻白发布了新的文献求助10
7秒前
8秒前
8秒前
xiaofeng应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得50
9秒前
Rye227应助科研通管家采纳,获得10
9秒前
9秒前
七七发布了新的文献求助10
11秒前
11秒前
11秒前
北风发布了新的文献求助10
11秒前
duonicola完成签到,获得积分10
13秒前
guozizi发布了新的文献求助10
14秒前
澳臻白完成签到,获得积分10
15秒前
大个应助沉默靳采纳,获得10
19秒前
ty-完成签到,获得积分10
19秒前
爆米花应助blueberry采纳,获得10
22秒前
科研通AI5应助动听居易采纳,获得10
22秒前
23秒前
在水一方应助知性的土豆采纳,获得10
23秒前
23秒前
24秒前
自然松发布了新的文献求助10
27秒前
阔达的八宝粥完成签到,获得积分10
28秒前
28秒前
zyk发布了新的文献求助10
28秒前
阳光的易真完成签到,获得积分10
28秒前
zjzyw完成签到 ,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792