A Deep Learning-based Approach for Medical Image Analysis and Diagnosis

可解释性 深度学习 工作流程 概化理论 计算机科学 人工智能 多学科方法 医学影像学 领域(数学) 数据科学 机器学习 心理学 发展心理学 社会科学 数学 数据库 社会学 纯数学
作者
Dibyahash Bordoloi
出处
期刊:Journal of algebraic statistics [Paul V. Galvin Library/Illinois Institute of Technology]
标识
DOI:10.52783/jas.v11i1.1436
摘要

The application of deep learning-based methods has revolutionized medical image processing and diagnosis. These methods have shown considerable promise in improving the accuracy and efficiency of medical image processing, reducing the burden on medical staff, and, ultimately, yielding better outcomes for patients. This study aims to summaries the most significant findings from deep learning-based approaches for analyzing and diagnosing medical images. This overview looks at recent literature and describes proposed systems, barriers, and applications of several approaches to this issue. Several barriers have been identified via this analysis, including but not limited to: data quality, data generalizability, data interpretability, ethical and regulatory concerns, integration with clinical workflow, and computer resources. A multidisciplinary approach is necessary to effectively address these challenges; this approach should underline the need of collaboration between researchers, medical professionals, and industry partners. Automated diagnosis, image segmentation, image registration, picture synthesis, and the discovery of biomarkers are just some of the many uses of deep learning-based algorithms in medical image analysis and diagnosis. The field of medical imaging stands to benefit greatly from deep learning-based approaches, which have the potential to change the lives of millions of people across the world for the better.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xzc关闭了xzc文献求助
2秒前
苗轩发布了新的文献求助10
2秒前
科研通AI2S应助liman采纳,获得10
2秒前
hgiuyg发布了新的文献求助10
3秒前
Bunny完成签到,获得积分10
3秒前
科研通AI2S应助lll采纳,获得10
4秒前
爆米花应助没有昵称采纳,获得10
4秒前
小周的读研日常完成签到,获得积分10
4秒前
研友_VZG7GZ应助一十六采纳,获得10
5秒前
Li关闭了Li文献求助
6秒前
李健应助xiaozhou采纳,获得10
6秒前
6秒前
oo完成签到 ,获得积分10
6秒前
大个应助笨笨芯采纳,获得10
6秒前
6秒前
高大冷菱完成签到 ,获得积分10
6秒前
麦子发布了新的文献求助10
7秒前
7秒前
SYLH应助ID8采纳,获得10
7秒前
9秒前
9秒前
9秒前
愉快若剑发布了新的文献求助10
10秒前
10秒前
10秒前
金海完成签到,获得积分10
10秒前
11秒前
库凯伊发布了新的文献求助10
11秒前
11秒前
lxx完成签到 ,获得积分10
12秒前
科目三应助maohui采纳,获得10
12秒前
12秒前
ooo娜完成签到,获得积分20
12秒前
bkagyin应助颜靖仇采纳,获得10
13秒前
搜集达人应助颜靖仇采纳,获得10
13秒前
研友_VZG7GZ应助颜靖仇采纳,获得10
13秒前
McGrady完成签到,获得积分20
13秒前
李健的小迷弟应助颜靖仇采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932956
求助须知:如何正确求助?哪些是违规求助? 3477753
关于积分的说明 10998957
捐赠科研通 3208127
什么是DOI,文献DOI怎么找? 1772715
邀请新用户注册赠送积分活动 860008
科研通“疑难数据库(出版商)”最低求助积分说明 797433