败血症
自噬
TFEB
医学
下调和上调
炎症
免疫学
肺
体内
生物
内科学
基因
细胞凋亡
生物化学
生物技术
作者
Huang Mingxin,Yiqin Yu,Xuheng Tang,Rui Dong,Xiaojie Li,Fen Li,Yongxin Jin,Shenhai Gong,Xingmin Wang,Zhenhua Zeng,Lin Huang,Hong Yang
标识
DOI:10.1016/j.bcp.2023.115632
摘要
Sepsis is a systemic inflammatory disease caused by multiple pathogens, with the most commonly affected organ being the lung. 3-Hydroxybutyrate plays a protective role in inflammatory diseases through autophagy promotion; however, the exact mechanism remains unexplored.Our study used the MIMIC-III database to construct a cohort of ICU sepsis patients and figure out the correlation between the level of ketone bodies and clinical prognosis in septic patients. In vivo and in vitro models of sepsis were used to reveal the role and mechanism of 3-hydroxybutyrate in sepsis-associated acute lung injury (sepsis-associated ALI).Herein, we observed a strong correlation between the levels of ketone bodies and clinical prognosis in patients with sepsis identified using the MIMIC- III database. In addition, exogenous 3-hydroxybutyrate supplementation improved the survival rate of CLP-induced sepsis in mice by promoting autophagy. Furthermore, 3-hydroxybutyrate treatment protected against sepsis-induced lung damage. We explored the mechanism underlying these effects. The results indicated that 3-hydroxybutyrate upregulates autophagy levels by promoting the transfer of transcription factor EB (TFEB) to the macrophage nucleus in a G-protein-coupled receptor 109 alpha (GPR109α) dependent manner, upregulating the transcriptional level of ultraviolet radiation resistant associated gene (UVRAG) and increasing the formation of autophagic lysosomes.3-Hydroxybutyrate can serve as a beneficial therapy for sepsis-associated ALI through the upregulation of autophagy. These results may provide a basis for the development of promising therapeutic strategies for sepsis-associated ALI.
科研通智能强力驱动
Strongly Powered by AbleSci AI