阳极
材料科学
锂(药物)
扩散
化学工程
纳米复合材料
纳米颗粒
离子
碳纤维
钼
氧化物
电导率
兴奋剂
吸附
过渡金属
纳米技术
电极
化学
复合数
复合材料
光电子学
物理化学
冶金
催化作用
医学
物理
有机化学
工程类
热力学
内分泌学
作者
Mei Guo,Liyin Huang,Changkai Zhao,Luman He,Yaqun Wang,Gang Dou,Guoxin Zhang,Xiaoming Sun
标识
DOI:10.1007/s40843-022-2457-4
摘要
Molybdenum oxide (MoO3) is an attractive anode material for lithium-ion batteries (LIBs); however, its low electrical conductivity, large volume expansion after lithiation, and slow Li-ion diffusion kinetics severely limit its practical applications. Here, ultrafine MoO3 nanoparticles (NPs) (10–15 nm) are synthesized from heavily Mo/N-doped carbonaceous precursors, resulting in MoO3 NPs confined in an N-doped carbon network. This design allows fast electron conduction and short Li-ion diffusion paths; meanwhile, abundant N species and O vacancies on the MoO3 surface lower the Li-ion adsorption barrier and together contribute to the durable Li-ion storage at high current rates. Notably, the obtained nanocomposite NC-MoO3 exhibits a high capacity of 1362 mA h g−1 (0.1 A g−1) and maintains a reversible capacity of 394 mA h g−1 at 10.0 A g−1. A coin-type full LiFePO4//NC-MoO3-400 cell obtains a large specific capacity of 81 mA h g−1 at 5 C. Our work inspires the design and confinement synthesis of other transition metal oxides embedded in conducting carbon networks for practical LIB applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI