微塑料
污染物
环境化学
化学
增塑剂
海水
垃圾箱
生态毒理学
持久性有机污染物
生物降解
污染
环境科学
废物管理
有机化学
生态学
生物
工程类
作者
Camilla Catarci Carteny,Elvio D. Amato,Fabienne Pfeiffer,Christina Christia,Nicolas Estoppey,Giulia Poma,Adrian Covaci,Ronny Blust
标识
DOI:10.1007/s11356-023-27887-1
摘要
The issue of microplastic (MP) litter in the aquatic environment and its capability of accumulating and/or releasing pollutants has been brought to light in recent years. Biodegradable plastics have been proposed as one of the different solutions to decrease environmental input of discarded plastics; however, their ability to accumulate and release pollutants once in the marine environment has not been assessed yet. In this study, we compare the accumulation and the release of a wide range of compounds by biodegradable (polyhydroxyalkanoates (PHA) and polybutylene succinate (PBS)) and conventional (polyethylene (PE)) MPs following exposure to natural seawater for 64 days. We quantified polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organophosphorus flame retardants (PFRs), phthalates, and alternative plasticizers in MPs, before and after exposure. Results indicated that PBS- and PHA-MPs accumulated the largest amount of PAHs and PFRs, respectively. Leaching of PFRs and plasticizers was observed for all polymers and was approximately twofold greater for PE- when compared to PBS- and PHA-MPs. Overall, our study suggests that biodegradable MPs may release less additives and accumulate a larger amount of contaminants from seawater compared to conventional ones: these findings may have implications on the risk assessment of biodegradable polymers for marine biota; and on potential widespread adoption of these types of plastics.
科研通智能强力驱动
Strongly Powered by AbleSci AI