生物医学中的光声成像
材料科学
分辨率(逻辑)
显微镜
光学
计算机科学
人工智能
物理
作者
Deepayan Samanta,Souradip Paul,Arijit Paramanick,Vishal Raval,Mayanglambam Suheshkumar Singh
出处
期刊:Optics Letters
[Optica Publishing Group]
日期:2023-05-23
卷期号:48 (13): 3443-3443
被引量:6
摘要
Observation and characterization of any changes in anatomical structures of ocular components remain as a conventional technique for diagnosis, staging, therapeutic treatments, and post-treatment monitoring of any ophthalmic disorders. The existing technologies fail to provide imaging of all of the various components of the eye simultaneously at one scanning time, i.e., one can recover vital patho-physiological information (structure and bio-molecular content) of the different ocular tissue sections only one after another. This article addresses the longstanding technological challenge by use of an emerging imaging modality [photoacoustic imaging (PAI)] in which we integrated a synthetic aperture reconstruction technique (SAFT). Experimental results-with experiments being conducted in excised tissues (goat eye)-demonstrated that we can simultaneously image the entire structure of the eye (∼2.5 cm) depicting clearly the distinctive ocular structures (cornea, aqueous humor, iris, pupil, eye lens, vitreous humor, and retina). This study uniquely opens an avenue for promising ophthalmic (clinical) applications of high clinical impact.
科研通智能强力驱动
Strongly Powered by AbleSci AI