Harnessing Self-Repairing and Crystallization Processes for Effective Enzyme Encapsulation in Covalent Organic Frameworks

化学 介孔材料 共价键 结晶 封装(网络) 固定化酶 聚合物 多孔性 纳米技术 生物催化 化学工程 材料科学 有机化学 催化作用 计算机科学 离子液体 工程类 计算机网络
作者
Yufeng Zhang,Chunyan Xing,Zhenjie Mu,Ziru Niu,Xiao Feng,Yuanyuan Zhang,Bo Wang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (24): 13469-13475 被引量:59
标识
DOI:10.1021/jacs.3c04183
摘要

Immobilization of fragile enzymes in crystalline porous materials offers new opportunities to expand the applications of biocatalysts. However, limited by the pore size and/or harsh synthesis conditions of the porous hosts, enzymes often suffer from dimension limitation or denaturation during the immobilization process. Taking advantage of the dynamic covalent chemistry feature of covalent organic frameworks (COFs), herein, we report a preprotection strategy to encapsulate enzymes in COFs during the self-repairing and crystallization process. Enzymes were first loaded in the low-crystalline polymer networks with mesopores formed at the initial growth stage, which could offer effective protection for enzymes from the harsh reaction conditions, and subsequently the encapsulation proceeded during the self-repairing and crystallization of the disordered polymer into the crystalline framework. Impressively, the biological activity of the enzymes can be well-maintained after encapsulation, and the obtained enzyme@COFs also show superior stability. Furthermore, the preprotection strategy circumvents the size limitation for enzymes, and its versatility was verified by enzymes with different sizes and surface charges, as well as a two-enzyme cascade system. This study offers a universal design idea to encapsulate enzymes in robust porous supports and holds promise for developing high-performance immobilized biocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助Draeck采纳,获得10
刚刚
刚刚
如此完成签到,获得积分10
刚刚
刚刚
1秒前
Megumi完成签到,获得积分10
2秒前
潇洒的如松完成签到,获得积分10
5秒前
微笑的井完成签到 ,获得积分10
6秒前
asdlxz发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助排骨粉蒸肉采纳,获得10
8秒前
Draeck完成签到,获得积分10
9秒前
隐形曼青应助fxz采纳,获得10
10秒前
10秒前
11秒前
彭于晏应助张ZWY采纳,获得20
12秒前
爱笑的醉卉完成签到,获得积分10
14秒前
14秒前
nxy发布了新的文献求助10
16秒前
梁_发布了新的文献求助10
18秒前
Lzyi完成签到 ,获得积分20
18秒前
大气的火龙果完成签到 ,获得积分10
20秒前
21秒前
21秒前
蓝风铃完成签到 ,获得积分10
21秒前
探索完成签到,获得积分10
22秒前
Zhoey完成签到,获得积分10
22秒前
23秒前
研友_ngJQzL完成签到,获得积分10
24秒前
TH1223发布了新的文献求助100
24秒前
lst发布了新的文献求助20
24秒前
一朵云完成签到,获得积分10
25秒前
XiaoXin发布了新的文献求助10
26秒前
26秒前
淡淡的夜山完成签到,获得积分10
26秒前
Lzyi发布了新的文献求助30
27秒前
jinhuanghuiyu完成签到,获得积分10
27秒前
28秒前
Zhoey发布了新的文献求助10
28秒前
可爱的函函应助Liar采纳,获得10
29秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050244
求助须知:如何正确求助?哪些是违规求助? 3588402
关于积分的说明 11402809
捐赠科研通 3314847
什么是DOI,文献DOI怎么找? 1823405
邀请新用户注册赠送积分活动 895370
科研通“疑难数据库(出版商)”最低求助积分说明 816755