SE-NDEND: A novel symmetric watermarking framework with neural network-based chaotic encryption for Internet of Medical Things

计算机科学 数字水印 稳健性(进化) 水印 加密 混乱的 人工神经网络 计算机安全 人工智能 互联网 人为噪声 数据挖掘 计算机工程 计算机网络 嵌入 图像(数学) 发射机 万维网 生物化学 化学 频道(广播) 基因
作者
Xiuli Chai,Zongwei Tang,Zhihua Gan,Yang Lu,Sheng Wang,Yushu Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105877-105877 被引量:4
标识
DOI:10.1016/j.bspc.2023.105877
摘要

The development of the Internet of Medical Things heavily relies on big data, and data security based on medical images has become a growing concern in society. Digital watermarking serves as a crucial technique for protecting and tracing medical image data copyright, as well as enabling forensic analysis. However, existing deep watermarking methods often neglect the protection of watermarks after extraction, leading to potential copyright disputes. To address this issue, this paper proposes SE-NDEND, a novel symmetric watermarking framework with neural network-based chaotic encryption for the Internet of Medical Things that significantly enhances the effectiveness and security of watermarking while maintaining robustness. Specifically, the SE-NDEND leverages neural networks to simulate chaotic systems and generate chaotic sequences, mitigating the complexity and high cost of implementing chaotic systems using hardware circuits. Moreover, we introduce a new noise layer with Moiré distortion that interacts with the decoder, forming a symmetric network structure that bolsters the robustness of watermarking. Parameters are jointly trained and shared during the training process to counteract potential interference from the noise layer. Experimental results validate the effectiveness of SE-NDEND in enhancing copyright protection, traceability, and forensic capabilities, surpassing existing deep learning methods in terms of visual quality (with PSNR of 45.8492 dB and SSIM of 0.9874), security, and robustness. The proposed framework can find application in protecting medical image data in the Internet of Medical Things.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
bkagyin应助隐形的小蜜蜂采纳,获得10
1秒前
135完成签到 ,获得积分10
2秒前
小明发布了新的文献求助10
2秒前
2秒前
idiot完成签到,获得积分20
3秒前
4秒前
吴未发布了新的文献求助10
4秒前
天天快乐应助如意草丛采纳,获得10
5秒前
Nemo发布了新的文献求助10
5秒前
5秒前
idiot发布了新的文献求助10
6秒前
9秒前
科研通AI5应助大方的黑米采纳,获得10
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
科目三应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
11哥应助科研通管家采纳,获得10
10秒前
10秒前
思源应助科研通管家采纳,获得10
10秒前
10秒前
爵炜发布了新的文献求助10
11秒前
11秒前
大力的忆霜完成签到 ,获得积分10
12秒前
自觉的K完成签到,获得积分10
13秒前
谦让的青亦完成签到,获得积分10
13秒前
14秒前
jonghuang发布了新的文献求助10
14秒前
自信的伊完成签到,获得积分10
14秒前
14秒前
如意草丛发布了新的文献求助10
15秒前
聪明十三完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
调皮黑猫应助Choi采纳,获得50
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791756
求助须知:如何正确求助?哪些是违规求助? 3336090
关于积分的说明 10278727
捐赠科研通 3052729
什么是DOI,文献DOI怎么找? 1675280
邀请新用户注册赠送积分活动 803318
科研通“疑难数据库(出版商)”最低求助积分说明 761165