Accurate estimation of biological age and its application in disease prediction using a multimodal image Transformer system

生物标志物 人工智能 计算机科学 模式 人口 医学 生物 社会科学 生物化学 环境卫生 社会学
作者
Jinzhuo Wang,Yuanxu Gao,Fangfei Wang,Simiao Zeng,Jiahui Li,Hanpei Miao,Taorui Wang,Jin Zeng,Daniel T. Baptista‐Hon,Olivia Monteiro,Taihua Guan,Linling Cheng,Yuxing Lu,Zhengchao Luo,Ming Li,Jian‐Kang Zhu,Sheng Nie,Kang Zhang,Yong Zhou
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (3) 被引量:8
标识
DOI:10.1073/pnas.2308812120
摘要

Aging in an individual refers to the temporal change, mostly decline, in the body’s ability to meet physiological demands. Biological age (BA) is a biomarker of chronological aging and can be used to stratify populations to predict certain age-related chronic diseases. BA can be predicted from biomedical features such as brain MRI, retinal, or facial images, but the inherent heterogeneity in the aging process limits the usefulness of BA predicted from individual body systems. In this paper, we developed a multimodal Transformer–based architecture with cross-attention which was able to combine facial, tongue, and retinal images to estimate BA. We trained our model using facial, tongue, and retinal images from 11,223 healthy subjects and demonstrated that using a fusion of the three image modalities achieved the most accurate BA predictions. We validated our approach on a test population of 2,840 individuals with six chronic diseases and obtained significant difference between chronological age and BA (AgeDiff) than that of healthy subjects. We showed that AgeDiff has the potential to be utilized as a standalone biomarker or conjunctively alongside other known factors for risk stratification and progression prediction of chronic diseases. Our results therefore highlight the feasibility of using multimodal images to estimate and interrogate the aging process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
技术的不能发表完成签到 ,获得积分10
刚刚
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得100
2秒前
CodeCraft应助贪玩的幻姬采纳,获得10
5秒前
5秒前
Linus完成签到 ,获得积分10
8秒前
FnDs完成签到,获得积分10
11秒前
Arueliano发布了新的文献求助10
11秒前
科目三应助Evelyn采纳,获得10
12秒前
15秒前
隐形曼青应助火花采纳,获得10
15秒前
木瓜小五哥完成签到,获得积分10
17秒前
hs完成签到,获得积分10
17秒前
温暖静柏发布了新的文献求助10
19秒前
王妍妍完成签到,获得积分10
21秒前
LLL完成签到 ,获得积分10
24秒前
眼睛大的胡萝卜完成签到 ,获得积分10
26秒前
fengfenghao完成签到,获得积分10
27秒前
27秒前
活泼的巧曼完成签到,获得积分10
28秒前
温暖静柏完成签到,获得积分20
29秒前
大模型应助Arueliano采纳,获得10
31秒前
32秒前
可爱的函函应助于晨欣采纳,获得10
35秒前
希望天下0贩的0应助努力采纳,获得10
36秒前
Jacquielin完成签到,获得积分10
37秒前
小谢同学完成签到 ,获得积分10
37秒前
39秒前
geold完成签到,获得积分10
41秒前
XXHH完成签到 ,获得积分10
43秒前
44秒前
Evelyn发布了新的文献求助10
44秒前
科研小狗完成签到 ,获得积分10
47秒前
zzzzz完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776445
求助须知:如何正确求助?哪些是违规求助? 3321879
关于积分的说明 10208121
捐赠科研通 3037207
什么是DOI,文献DOI怎么找? 1666578
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872