Deep Learning for Plant Identification and Disease Classification from Leaf Images: Multi-prediction Approaches

计算机科学 人工智能 鉴定(生物学) 植物鉴定 机器学习 深度学习 模式识别(心理学) 植物病害 植物 生物技术 生物
作者
Jianping Yao,Son N. Tran,Saurabh Garg,Samantha Sawyer
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:56 (6): 1-37 被引量:26
标识
DOI:10.1145/3639816
摘要

Deep learning (DL) plays an important role in modern agriculture, especially in plant pathology using leaf images where convolutional neural networks (CNN) are attracting a lot of attention. While numerous reviews have explored the applications of DL within this research domain, there remains a notable absence of an empirical study to offer insightful comparisons due to the employment of varied datasets in the evaluation. Furthermore, a majority of these approaches tend to address the problem as a singular prediction task, overlooking the multifaceted nature of predicting various aspects of plant species and disease types. Lastly, there is an evident need for a more profound consideration of the semantic relationships that underlie plant species and disease types. In this article, we start our study by surveying current DL approaches for plant identification and disease classification. We categorise the approaches into multi-model, multi-label, multi-output, and multi-task, in which different backbone CNNs can be employed. Furthermore, based on the survey of existing approaches in plant pathology and the study of available approaches in machine learning, we propose a new model named Generalised Stacking Multi-output CNN (GSMo-CNN). To investigate the effectiveness of different backbone CNNs and learning approaches, we conduct an intensive experiment on three benchmark datasets Plant Village, Plant Leaves, and PlantDoc. The experimental results demonstrate that InceptionV3 can be a good choice for a backbone CNN as its performance is better than AlexNet, VGG16, ResNet101, EfficientNet, MobileNet, and a custom CNN developed by us. Interestingly, there is empirical evidence to support the hypothesis that using a single model for both tasks can be comparable or better than using two models, one for each task. Finally, we show that the proposed GSMo-CNN achieves state-of-the-art performance on three benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
姗姗发布了新的文献求助10
2秒前
油条完成签到,获得积分10
2秒前
syiimo完成签到 ,获得积分10
3秒前
Deny完成签到,获得积分10
3秒前
5秒前
积极的凌波完成签到,获得积分20
5秒前
1397发布了新的文献求助10
5秒前
YY完成签到,获得积分10
6秒前
d83应助xwwx采纳,获得10
6秒前
研友_nV2Kyn完成签到,获得积分10
9秒前
wyh发布了新的文献求助10
9秒前
10秒前
11秒前
思源应助xianyu采纳,获得10
11秒前
ONE完成签到,获得积分10
11秒前
欣喜思萱完成签到,获得积分10
11秒前
liyi发布了新的文献求助10
16秒前
不如不见完成签到 ,获得积分10
16秒前
ff发布了新的文献求助10
16秒前
小土豆完成签到,获得积分10
16秒前
1397完成签到,获得积分20
19秒前
Nn1发布了新的文献求助10
19秒前
田様应助放寒假的采纳,获得10
19秒前
19秒前
20秒前
ding应助wyh采纳,获得10
21秒前
小羊完成签到,获得积分10
23秒前
HY完成签到 ,获得积分10
23秒前
24秒前
24秒前
superLmy完成签到 ,获得积分10
24秒前
liyi完成签到,获得积分20
25秒前
番茄发布了新的文献求助10
25秒前
zmz发布了新的文献求助10
25秒前
loseyourself发布了新的文献求助10
27秒前
tx发布了新的文献求助150
29秒前
darsting11发布了新的文献求助10
31秒前
完美的一天完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4439479
求助须知:如何正确求助?哪些是违规求助? 3912085
关于积分的说明 12149863
捐赠科研通 3559048
什么是DOI,文献DOI怎么找? 1953656
邀请新用户注册赠送积分活动 993449
科研通“疑难数据库(出版商)”最低求助积分说明 888922