Distributed Multi-Agent Reinforcement Learning for Collaborative Path Planning and Scheduling in Blockchain-Based Cognitive Internet of Vehicles

计算机科学 强化学习 分布式计算 调度(生产过程) 延迟(音频) 交通拥挤 马尔可夫决策过程 计算机网络 计算卸载 边缘计算 云计算 马尔可夫过程 人工智能 工程类 电信 运营管理 统计 数学 运输工程 操作系统
作者
Huigang Chang,Yiming Liu,Zhengguo Sheng
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (5): 6301-6317 被引量:4
标识
DOI:10.1109/tvt.2023.3344934
摘要

The collaborative path planning and scheduling can overcome the limitations of single vehicle intelligence to obtain a globally optimal decision strategy in cognitive internet of vehicles (CIoVs). The collaboration of vehicles necessitates the exchange of environmental and decision information, generating massive collaborative computing tasks with strict latency requirements. Leveraging mobile edge computing (MEC) technology, computing tasks can be processed near the vehicles to reduce latency. However, traffic congestion and computational load imbalance seriously affect traffic efficiency and computational latency. In hybrid driving scenarios, it is challenging to fulfill the diverse service requirements of vehicles with different intelligence levels. Moreover, non-collaborative tend to result in traffic congestion due to vehicle aggregation effects, while centralized solutions lack flexibility and have high computational complexity. To address these concerns, a distributed multi-agent reinforcement learning (DMARL) algorithm is proposed for collaborative path planning and scheduling in a blockchain-based collaboration framework. In this framework, we model the communication, traffic situation and task processing of the system and formulate a joint optimization problem to minimize both travel time and computation latency. Last, we convert the scheduling problem for different types of vehicles into Markov decision processes (MDPs) and propose Q-learning-based DMARL algorithm to achieve proactive load balancing of both road infrastructures and MEC nodes (MECNs). Simulation results demonstrate that the proposed approach outperforms the comparison schemes in terms of load balance indexes of roads and MECNs, travel time, and computation latency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无聊的老姆完成签到 ,获得积分10
1秒前
手拿把掐吴完成签到 ,获得积分10
2秒前
欣喜南莲发布了新的文献求助10
3秒前
小邱大王完成签到,获得积分10
3秒前
3秒前
YHX完成签到,获得积分10
4秒前
chemhub完成签到,获得积分10
5秒前
充电宝应助初九采纳,获得10
7秒前
干饭啦完成签到,获得积分10
7秒前
坚强的如蓉完成签到,获得积分10
8秒前
xkkk完成签到,获得积分10
8秒前
8秒前
9秒前
懒虫儿坤完成签到,获得积分10
9秒前
9秒前
HM发布了新的文献求助10
11秒前
遮宁完成签到,获得积分10
11秒前
大个应助欣喜南莲采纳,获得10
12秒前
14秒前
初九完成签到,获得积分10
16秒前
否极泰来完成签到,获得积分20
19秒前
20秒前
丫丫发布了新的文献求助10
20秒前
wanci应助HM采纳,获得10
23秒前
共享精神应助酷酷的店员采纳,获得10
23秒前
Orange应助MY采纳,获得10
23秒前
宋小兔应助十八采纳,获得20
23秒前
欣喜南莲完成签到,获得积分10
23秒前
CipherSage应助daqisong采纳,获得10
24秒前
程大海完成签到,获得积分10
24秒前
无花果应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
Biscuit应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
打卡下班应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4081306
求助须知:如何正确求助?哪些是违规求助? 3620773
关于积分的说明 11487169
捐赠科研通 3336188
什么是DOI,文献DOI怎么找? 1834056
邀请新用户注册赠送积分活动 902839
科研通“疑难数据库(出版商)”最低求助积分说明 821313