Characterization of immunogenic cell death regulators predicts survival and immunotherapy response in lung adenocarcinoma

免疫系统 免疫疗法 生物 腺癌 肺癌 癌症研究 免疫学 转录组 基因 肿瘤科 医学 癌症 基因表达 生物化学 遗传学
作者
Desheng Zhou,Yachao Cui,Minggao Zhu,Yunen Lin,Jing Guo,Yingchang Li,Junwei Zhang,Zhenpeng Wu,Jie Guo,Yongzhen Chen,Wendi Liang,Weiqi Lin,Kefan Lei,Ting Zhao,Qiang You
出处
期刊:Life Sciences [Elsevier]
卷期号:338: 122396-122396 被引量:1
标识
DOI:10.1016/j.lfs.2023.122396
摘要

Lung adenocarcinoma (LUAD) is highly lethal tumor; understanding immune response is crucial for current effective treatment. Research investigated immunogenic cell death (ICD) impact on LUAD through 75 ICD-related genes which encompass cell damage, endoplasmic reticulum stress, microenvironment, and immunity. Transcriptome data and clinical info were analyzed, revealing two ICD-related clusters: B, an immune osmotic subgroup, had better prognosis, stronger immune signaling, and higher infiltration, while A represented an immune-deficient subgroup. Univariate Cox analysis identified six prognostic genes (AGER, CD69, CD83, CLEC9A, CTLA4, and NT5E), forming a validated risk score model. It was validated across datasets, showing predictive performance. High-risk group had unfavorable prognosis, lower immune infiltration, and higher chemotherapy sensitivity. Conversely, low-risk group had better prognosis, higher immune infiltration, and favorable immunotherapy response. The key gene NT5E was examined via immunohistochemistry, with higher expression linked to poorer prognosis. NT5E was predominantly expressed in B cells, fibroblasts, and endothelial cells, correlated with immune checkpoints. These outcomes suggest that NT5E can serve as a LUAD therapeutic target. The study highlights gene predictive value, offers an efficient tumor assessment tool, guides clinical treatment strategies, and identifies NT5E as therapeutic target for LUAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
听梦完成签到,获得积分10
1秒前
轻松的语海完成签到,获得积分20
1秒前
坦率灵槐发布了新的文献求助10
1秒前
小行星发布了新的文献求助20
1秒前
科研通AI6应助悦耳的襄采纳,获得30
2秒前
sss关闭了sss文献求助
2秒前
在望发布了新的文献求助10
3秒前
FashionBoy应助开心的西瓜采纳,获得10
3秒前
amape发布了新的文献求助10
3秒前
科研通AI2S应助lk采纳,获得10
3秒前
4秒前
乐乐应助娇气的寒梅采纳,获得10
4秒前
5秒前
无限续发布了新的文献求助20
6秒前
TYQ发布了新的文献求助10
7秒前
7秒前
Racheal完成签到,获得积分20
7秒前
慕青应助dddd采纳,获得10
8秒前
Owen应助灵巧的沛凝采纳,获得10
8秒前
隐形曼青应助甜甜画笔采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
英姑应助缓慢平蓝采纳,获得50
11秒前
12秒前
gengen应助Nene采纳,获得10
13秒前
chenqiumu应助Nene采纳,获得30
13秒前
OeO完成签到 ,获得积分10
13秒前
14秒前
14秒前
Akim应助大马猴采纳,获得10
14秒前
15秒前
AIA发布了新的文献求助30
15秒前
15秒前
淡抹青春完成签到,获得积分10
15秒前
李佳芮完成签到,获得积分10
15秒前
16秒前
情怀应助amape采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468720
求助须知:如何正确求助?哪些是违规求助? 4572113
关于积分的说明 14333499
捐赠科研通 4498847
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921