计算机科学
云计算
方案(数学)
计算机网络
操作系统
数学
数学分析
作者
Yakun Huang,Boyuan Bai,Yuanwei Zhu,Xiuquan Qiao,Xiang Su,Lei Yang,Ping Zhang
标识
DOI:10.1109/jsac.2023.3345430
摘要
In the metaverse era, point cloud video (PCV) streaming on mobile XR devices is pivotal. While most current methods focus on PCV compression from traditional 3-DoF video services, emerging AI techniques extract vital semantic information, producing content resembling the original. However, these are early-stage and computationally intensive. To enhance the inference efficacy of AI-based approaches, accommodate dynamic environments, and facilitate applicability to metaverse XR devices, we present ISCom, an interest-aware semantic communication scheme for lightweight PCV streaming. ISCom is featured with a region-of-interest (ROI) selection module, a lightweight encoder-decoder training module, and a learning-based scheduler to achieve real-time PCV decoding and rendering on resource-constrained devices. ISCom's dual-stage ROI selection provides significantly reduces data volume according to real-time interest. The lightweight PCV encoder-decoder training is tailored to resource-constrained devices and adapts to the heterogeneous computing capabilities of devices. Furthermore, We provide a deep reinforcement learning (DRL)-based scheduler to select optimal encoder-decoder model for various devices adaptivelly, considering the dynamic network environments and device computing capabilities. Our extensive experiments demonstrate that ISCom outperforms baselines on mobile devices, achieving a minimum rendering frame rate improvement of 10 FPS and up to 22 FPS. Furthermore, our method significantly reduces memory usage by 41.7% compared to the state-of-the-art AITransfer method. These results highlight the effectiveness of ISCom in enabling lightweight PCV streaming and its potential to improve immersive experiences for emerging metaverse application.
科研通智能强力驱动
Strongly Powered by AbleSci AI